Skip to main content
Log in

Exercise Training for Management of Peripheral Arterial Disease: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Peripheral arterial disease (PAD), a chronic condition with debilitating clinical sequelae, leads to reduced walking activity and increased mortality risk.

Objective

We sought to quantify expected benefits elicited via exercise training in people with PAD and aimed to clarify which prescriptions were optimal.

Data sources

We conducted a systematic search (PubMed, CINAHL, Cochrane controlled trials registry; 1966–31 July 2013).

Study selection

We included randomized controlled trials (RCTs) of exercise training versus usual medical care in persons with PAD. Studies were assessed by two reviewers, 41 of 57 (72 %) of RCTs met selection criteria.

Data extraction and synthesis

Data extraction sheets were used to record data and two reviewers cross-checked data. Included study authors were asked for missing data.

Main outcomes and measures

Primary outcome: change in aerobic capacity (peak VO2). Secondary outcomes: ankle-brachial index (ABI), flow-mediated dilatation, 6-minute walk claudication distances (initial and absolute) and graded treadmill (initial and absolute) distances. The primary hypothesis was that peak VO2 would increase with exercise training. Using sub-analyses, we also aimed to clarify what types of exercise prescription would provide patients with most benefit; hypotheses were developed a priori.

Results

Exercise training produced significant peak VO2 improvements with mean difference (MD) 0.62 ml·kg−1·min−1 (95 % CI 0.47–0.77; p < 0.00001); 6-minute walk initial claudication MD 52.7 m (95 % CI 24.7–80.6 m; p = 0.0002); total walking distance MD 34.9 m (95 % CI 25.6–44.1 m; p < 0.00001); graded treadmill initial claudication MD 68.8 m (95 % CI 54.4–83.2 m; p < 0.00001); absolute claudication distance MD 41.0 m (95 % CI 28.8–53.2 m; p < 0.00001)); but not ABI (p = 0.12) or flow mediated dilatation (FMD) (p = 0.96). Sub-analyses of change in peak VO2 after arm cranking showed a MD of 1.91 ml·kg−1·min−1 (95 % CI 1.28–2.54, p < 0.00001). Sub-analysis of peak VO2 according to exercise training pain thresholds suggested that no-to-mild pain may be superior (MD 0.79 ml·kg−1·min−1 [95 % CI 0.45–1.14, p < 0.00001]) to moderate-to-maximum training pain (MD 0.49 ml·kg−1·min−1 [95 % CI 0.31–0.66, p < 0.00001]).

Conclusions and relevance

Exercise training improves cardio-respiratory fitness, pain-free and total flat-ground walking distances, as well as graded treadmill performance in PAD. Exercise prescriptions for PAD may consider arm cranking as well as lower limb exercise, possibly at short vigorous intensity intervals, but only to a threshold of mild pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berger JS, Hochman J, Lobach I, Adelman MA, Riles TS, Rockman CB. Modifiable risk factor burden and the prevalence of peripheral artery disease in different vascular territories. J Vasc Surg.2013;58(3):673–681 (e671).

  2. Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24.

    Article  CAS  PubMed  Google Scholar 

  3. Mahoney EM, Wang K, Keo HH, et al. Vascular hospitalization rates and costs in patients with peripheral artery disease in the United States. Circ Cardiovasc Qual Outcomes. 2010;3(6):642–51.

    Article  PubMed  Google Scholar 

  4. Jancin B. Mean health care costs for PAD exceeds CAD. Vasc Spec Online. 2009.

  5. Moussa ID, Jaff MR, Mehran R, et al. Prevalence and prediction of previously unrecognized peripheral arterial disease in patients with coronary artery disease: the Peripheral Arterial Disease in Interventional Patients Study. Catheter Cardiovasc Interv. 2009;73(6):719–24.

    Article  PubMed  Google Scholar 

  6. Leeper NJ, Myers J, Zhou M, et al. Exercise capacity is the strongest predictor of mortality in patients with peripheral arterial disease. J Vasc Surg. 2013;57(3):728–33.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Parmenter BJ, Raymond J, Dinnen P, Singh MA. A systematic review of randomized controlled trials: Walking versus alternative exercise prescription as treatment for intermittent claudication. Atherosclerosis. 2011;218(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Parmenter BJ, Raymond J. Fiatarone Singh MA. The effect of exercise on fitness and performance-based tests of function in intermittent claudication: a systematic review. Sports Med. 2013;43(6):513–24.

    Article  PubMed  Google Scholar 

  9. Watson L, Ellis B, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2008(4):CD000990.

  10. Gardner AW, Montgomery PS, Parker DE. Physical activity is a predictor of all-cause mortality in patients with intermittent claudication. J Vasc Surg. 2008;47(1):117–22.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Parmenter BJ, Raymond J. Fiatarone Singh MA. The effect of exercise on haemodynamics in intermittent claudication: a systematic review of randomized controlled trials. Sports Med. 2010;40(5):433–47.

    Article  PubMed  Google Scholar 

  12. Leng GC, Fowler B, Ernst E. Exercise for intermittent claudication. Cochrane Database Syst Rev. 2000(2):CD000990.

  13. McDermott MM, Ades PA, Dyer A, Guralnik JM, Kibbe M, Criqui MH. Corridor-based functional performance measures correlate better with physical activity during daily life than treadmill measures in persons with peripheral arterial disease. J Vasc Surg. 2008;48(5):1231–1237 (1237 e1231).

  14. Gardner AW, Afaq A. Management of lower extremity peripheral arterial disease. J Cardiopulm Rehabil Prev. 2008;28(6):349–57.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21.

    PubMed  Google Scholar 

  16. Bendermacher BL, Willigendael EM, Teijink JA, Prins MH. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. 2006(2):CD005263.

  17. Fokkenrood HJ, Bendermacher BL, Lauret GJ, Willigendael EM, Prins MH, Teijink JA. Supervised exercise therapy versus non-supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev. 2013;8:CD005263.

  18. Gardner AW, Skinner JS, Cantwell BW, Smith LK. Progressive vs single-stage treadmill tests for evaluation of claudication. Med Sci Sports Exerc. 1991;23(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  19. Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation. 1990;81(2):602–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hiatt WR, Wolfel EE, Meier RH, Regensteiner JG. Superiority of treadmill walking exercise versus strength training for patients with peripheral arterial disease. Implications for the mechanism of the training response. Circulation. 1994;90(4):1866–74.

    Article  CAS  PubMed  Google Scholar 

  21. Mika P, Spodaryk K, Cencora A, Mika A. Red blood cell deformability in patients with claudication after pain-free treadmill training. Clin J Sport Med. 2006;16(4):335–40.

    Article  PubMed  Google Scholar 

  22. Mosti MP, Wang E, Wiggen ON, Helgerud J, Hoff J. Concurrent strength and endurance training improves physical capacity in patients with peripheral arterial disease. Scand J Med Sci Sports. 2011;21(6):e308–14.

    Article  CAS  PubMed  Google Scholar 

  23. Regensteiner JG, Meyer TJ, Krupski WC, Cranford LS, Hiatt WR. Hospital vs home-based exercise rehabilitation for patients with peripheral arterial occlusive disease. Angiology. 1997;48(4):291–300.

    Article  CAS  PubMed  Google Scholar 

  24. Regensteiner JG, Steiner JF, Hiatt WR. Exercise training improves functional status in patients with peripheral arterial disease. J Vasc Surg. 1996;23(1):104–15.

    Article  CAS  PubMed  Google Scholar 

  25. Treat-Jacobson D, Bronas UG, Leon AS. Efficacy of arm-ergometry versus treadmill exercise training to improve walking distance in patients with claudication. Vasc Med. 2009;14(3):203–13.

    Article  PubMed  Google Scholar 

  26. Wang E, Hoff J, Loe H, Kaehler N, Helgerud J. Plantar flexion: an effective training for peripheral arterial disease. Eur J Appl Physiol. 2008;104(4):749–56.

    Article  PubMed  Google Scholar 

  27. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. 2011. http://www.Cochrane-handbook.org. Accessed 29 March 2012.

  29. Norton K, Norton L, Sadgrove D. Position statement on physical activity and exercise intensity terminology. J Sci Med Sport. 2010;13(5):496–502.

    Article  PubMed  Google Scholar 

  30. Medicine ACoS. Guidelines for exercise testing and prescription, 9th edn. Baltimore: Lippincott Williams & Wilkins; 2014.

  31. Allen JD, Stabler T, Kenjale A, et al. Plasma nitrite flux predicts exercise performance in peripheral arterial disease after 3 months of exercise training. Free Radical Biol Med. 2010;49(6):1138–44.

    Article  CAS  Google Scholar 

  32. Bronas UG, Treat-Jacobson D, Leon AS. Comparison of the effect of upper body-ergometry aerobic training vs treadmill training on central cardiorespiratory improvement and walking distance in patients with claudication. J Vasc Surg. 2011;53(6):1557–64.

    Article  PubMed  Google Scholar 

  33. Cheetham DR, Burgess L, Ellis M, Williams A, Greenhalgh RM, Davies AH. Does supervised exercise offer adjuvant benefit over exercise advice alone for the treatment of intermittent claudication? A randomised trial. Eur J Vasc Endovasc Surg. 2004;27(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  34. Collins EG, Edwin Langbein W, Orebaugh C, et al. PoleStriding exercise and vitamin E for management of peripheral vascular disease. Med Sci Sports Exerc. 2003;35(3):384–393.

  35. Crowther RG, Leicht AS, Spinks WL, Sangla K, Quigley F, Golledge J. Effects of a 6-month exercise program pilot study on walking economy, peak physiological characteristics, and walking performance in patients with peripheral arterial disease. Vasc Health Risk Manag. 2012;8:225–32.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Crowther RG, Spinks WL, Leicht AS, Sangla K, Quigley F, Golledge J. Effects of a long-term exercise program on lower limb mobility, physiological responses, walking performance, and physical activity levels in patients with peripheral arterial disease. J Vasc Surg. 2008;47(2):303–9.

    Article  PubMed  Google Scholar 

  37. Cucato GG, Chehuen Mda R, Costa LA, et al. Exercise prescription using the heart of claudication pain onset in patients with intermittent claudication. Clinics (Sao Paulo). 2013;68(7):974–978.

  38. Gardner AW, Katzel LI, Sorkin JD, et al. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: a randomized controlled trial. J Am Geriatr Soc. 2001;49(6):755–62.

    Article  CAS  PubMed  Google Scholar 

  39. Gardner AW, Montgomery PS, Parker DE. Optimal exercise program length for patients with claudication. J Vasc Surg. 2012;55(5):1346–54.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Gardner AW, Parker DE, Montgomery PS, Scott KJ, Blevins SM. Efficacy of quantified home-based exercise and supervised exercise in patients with intermittent claudication: a randomized controlled trial. Circulation. 2011;123(5):491–8.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gelin J, Jivegard L, Taft C, et al. Treatment efficacy of intermittent claudication by surgical intervention, supervised physical exercise training compared to no treatment in unselected randomised patients I: one year results of functional and physiological improvements. Eur J Vasc Endovasc Surg. 2001;22(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  42. Gibellini R, Fanello M, Bardile AF, Salerno M, Aloi T. Exercise training in intermittent claudication. Int Angiol. 2000;19(1):8–13.

    CAS  PubMed  Google Scholar 

  43. Hobbs SD, Marshall T, Fegan C, Adam DJ, Bradbury AW. The constitutive procoagulant and hypofibrinolytic state in patients with intermittent claudication due to infrainguinal disease significantly improves with percutaneous transluminal balloon angioplasty. J Vasc Surg. 2006;43(1):40–6.

    Article  PubMed  Google Scholar 

  44. Hobbs SD, Marshall T, Fegan C, Adam DJ, Bradbury AW. The effect of supervised exercise and cilostazol on coagulation and fibrinolysis in intermittent claudication: a randomized controlled trial. J Vasc Surg. 2007;45(1):65–70 (discussion 70).

  45. Hodges LD, Sandercock GR, Das SK, Brodie DA. Randomized controlled trial of supervised exercise to evaluate changes in cardiac function in patients with peripheral atherosclerotic disease. Clin Physiol Funct Imaging. 2008;28(1):32–7.

    CAS  PubMed  Google Scholar 

  46. Kakkos SK, Geroulakos G, Nicolaides AN. Improvement of the walking ability in intermittent claudication due to superficial femoral artery occlusion with supervised exercise and pneumatic foot and calf compression: a randomised controlled trial. Eur J Vasc Endovasc Surg. 2005;30(2):164–75.

    Article  CAS  PubMed  Google Scholar 

  47. Larsen OA, Lassen NA. Effect of daily muscular exercise in patients with intermittent claudication. Lancet. 1966;2(7473):1093–6.

    Article  CAS  PubMed  Google Scholar 

  48. Mannarino E, Pasqualini L, Innocente S, Scricciolo V, Rignanese A, Ciuffetti G. Physical training and antiplatelet treatment in stage II peripheral arterial occlusive disease: alone or combined? Angiology. 1991;42(7):513–21.

    Article  CAS  PubMed  Google Scholar 

  49. McDermott MM, Ades P, Guralnik JM, et al. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: a randomized controlled trial. JAMA. 2009;301(2):165–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. McDermott MM, Criqui MH, Greenland P, et al. Leg strength in peripheral arterial disease: associations with disease severity and lower-extremity performance. J Vasc Surg. 2004;39(3):523–30.

    Article  PubMed  Google Scholar 

  51. McDermott MM, Liu K, Guralnik JM, et al. Home-based walking exercise intervention in peripheral artery disease: a randomized clinical trial. JAMA. 2013;310(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  52. McGuigan MR, Bronks R, Newton RU, et al. Resistance training in patients with peripheral arterial disease: effects on myosin isoforms, fiber type distribution, and capillary supply to skeletal muscle. J Gerontol A Biol Sci Med Sci. 2001;56(7):B302–10.

    Article  CAS  PubMed  Google Scholar 

  53. Nicolai SP, Teijink JA, Prins MH. Exercise Therapy in peripheral arterial disease study G. Multicenter randomized clinical trial of supervised exercise therapy with or without feedback versus walking advice for intermittent claudication. J Vasc Surg. 2010;52(2):348–55.

    Article  PubMed  Google Scholar 

  54. Parmenter BJ, Raymond J, Dinnen P, Lusby RJ. Fiatarone Singh MA. High-intensity progressive resistance training improves flat-ground walking in older adults with symptomatic peripheral arterial disease. J Am Geriatr Soc. 2013;61(11):1964–70.

    Article  PubMed  Google Scholar 

  55. Pinto BMMB, Patterson RB, Roberts M, Colucci A, Braun C. On-site versus home exercise programs: psychological benefits for individuals with arterial claudication. J Aging Phys Act. 1997;5(4):311–28.

    Google Scholar 

  56. Sanderson B, Askew C, Stewart I, Walker P, Gibbs H, Green S. Short-term effects of cycle and treadmill training on exercise tolerance in peripheral arterial disease. J Vasc Surg. 2006;44(1):119–27.

    Article  PubMed  Google Scholar 

  57. Sandri M, Adams V, Gielen S, et al. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation. 2005;111(25):3391–9.

    Article  PubMed  Google Scholar 

  58. Savage P, Ricci MA, Lynn M, et al. Effects of home versus supervised exercise for patients with intermittent claudication. J Cardiopulm Rehabil. 2001;21(3):152–7.

    Article  CAS  PubMed  Google Scholar 

  59. Stewart AH, Smith FC, Baird RN, Lamont PM. Local versus systemic mechanisms underlying supervised exercise training for intermittent claudication. Vasc Endovasc Surg. 2008;42(4):314–20.

    Article  Google Scholar 

  60. Tebbutt N, Robinson L, Todhunter J, Jonker L. A plantar flexion device exercise programme for patients with peripheral arterial disease: a randomised prospective feasibility study. Physiotherapy. 2011;97(3):244–9.

    Article  PubMed  Google Scholar 

  61. Tew G, Nawaz S, Zwierska I, Saxton JM. Limb-specific and cross-transfer effects of arm-crank exercise training in patients with symptomatic peripheral arterial disease. Clin Sci (Lond). 2009;117(12):405–13.

    Article  PubMed  Google Scholar 

  62. Tisi PV, Hulse M, Chulakadabba A, Gosling P, Shearman CP. Exercise training for intermittent claudication: does it adversely affect biochemical markers of the exercise-induced inflammatory response? Eur J Vasc Endovasc Surg. 1997;14(5):344–50.

    Article  CAS  PubMed  Google Scholar 

  63. Tsai JC, Chan P, Wang CH, et al. The effects of exercise training on walking function and perception of health status in elderly patients with peripheral arterial occlusive disease. J Intern Med. 2002;252(5):448–55.

    Article  CAS  PubMed  Google Scholar 

  64. Wood RE, Sanderson BE, Askew CD, Walker PJ, Green S, Stewart IB. Effect of training on the response of plasma vascular endothelial growth factor to exercise in patients with peripheral arterial disease. Clin Sci (Lond). 2006;111(6):401–9.

    Article  CAS  PubMed  Google Scholar 

  65. Zwierska I, Walker RD, Choksy SA, Male JS, Pockley AG, Saxton JM. Upper- vs lower-limb aerobic exercise rehabilitation in patients with symptomatic peripheral arterial disease: a randomized controlled trial. J Vasc Surg. 2005;42(6):1122–30.

    Article  PubMed  Google Scholar 

  66. Guyatt GH, Rennie D. Users’ guides to the medical literature. JAMA. 1993;270(17):2096–7.

    Article  CAS  PubMed  Google Scholar 

  67. Swank AM, Horton J, Fleg JL, et al. Modest increase in peak VO2 is related to better clinical outcomes in chronic heart failure patients: results from heart failure and a controlled trial to investigate outcomes of exercise training. Circ Heart Fail. 2012;5(5):579–85.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Cress ME, Meyer M. Maximal voluntary and functional performance levels needed for independence in adults aged 65 to 97 years. Phys Ther. 2003;83(1):37–48.

    PubMed  Google Scholar 

  69. Askew C. Exercise prescription for patients with peripheral arterial disease and intermittent claudication: A position statement from Exercise & Sports Science Australia. J Sci Med Sport. 2013 (in press, accepted for publication 24 October 2013).

  70. Ismail H, McFarlane JR, Nojoumian AH, Dieberg G, Smart NA. Clinical outcomes and cardiovascular responses to different exercise training intensities in patients with heart failure: a systematic review and meta-analysis. J Am Coll Cardiol Heart Fail. 2013 (pii S2213-1779(2213)00316-00318).

  71. Wisloff U, Stoylen A, Loennechen JP, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94.

    Article  PubMed  Google Scholar 

  72. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary. J Am Coll Cardiol. 2006;47(6):1239–312.

    Article  PubMed  Google Scholar 

  73. Norgren L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45 Suppl S:S5–67.

  74. Smart NA, Ismail H. Is it safer and more beneficial to work heart failure patients harder? An editorial commentary. Clin Cardiol. 2013;36(10):638–639.

  75. Gardner AW, Katzel LI, Sorkin JD, Goldberg AP. Effects of long-term exercise rehabilitation on claudication distances in patients with peripheral arterial disease: a randomized controlled trial. J Cardiopulm Rehabil. 2002;22(3):192–8.

    Article  PubMed  Google Scholar 

  76. McDermott MM, Kibbe M, Guralnik JM, et al. Comparative effectiveness study of self-directed walking exercise, lower extremity revascularization, and functional decline in peripheral artery disease. J Vasc Surg. 2013;57(4):990–996 (e991).

  77. Tisi PV Shearman CP. The impact of treatment of intermittent claudication on subjective health of the patient. Health Trends. 1998/9;30:109–114.

  78. Collins EG, Langbein WE, Orebaugh C, et al. Cardiovascular training effect associated with polestriding exercise in patients with peripheral arterial disease. J Cardiovasc Nurs. 2005;20(3):177–85.

    Article  PubMed  Google Scholar 

  79. Langbein WE, Collins EG, Orebaugh C, et al. Increasing exercise tolerance of persons limited by claudication pain using polestriding. J Vasc Surg. 2002;35(5):887–93.

    Article  PubMed  Google Scholar 

  80. Ekroth R, Dahllof AG, Gundevall B, Holm J, Schersten T. Physical training of patients with intermittent claudication: indications, methods, and results. Surgery. 1978;84(5):640–3.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Mr Glenn Phipps for his assistance with literature searching, Glenn was not paid for this work.

The authors Neil Smart, Gudrun Dieberg, and Belinda Parmenter have no conflicts of interest to declare.

We would also like to thank included study authors who provided additional information.

There are no financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. Smart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmenter, B.J., Dieberg, G. & Smart, N.A. Exercise Training for Management of Peripheral Arterial Disease: A Systematic Review and Meta-Analysis. Sports Med 45, 231–244 (2015). https://doi.org/10.1007/s40279-014-0261-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-014-0261-z

Keywords

Navigation