Skip to main content

Advertisement

Log in

Physical Exercise and Epigenetic Modulation: Elucidating Intricate Mechanisms

  • Current Opinion
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Physical exercise induces several metabolic adaptations to meet increased energy requirements. Promoter DNA methylation, histone post-translational modifications, or microRNA expression are involved in the gene expression changes implicated in metabolic adaptation after exercise. Epigenetic modifications and many epigenetic enzymes are potentially dependent on changes in the levels of metabolites, such as oxygen, tricarboxylic acid cycle intermediates, 2-oxoglutarate, 2-hydroxyglutarate, and β-hydroxybutyrate, and are therefore susceptible to the changes induced by exercise in a tissue-dependent manner. Most of these changes are regulated by important epigenetic modifiers that control DNA methylation (DNA methyl transferases, and ten–eleven-translocation proteins) and post-translational modifications in histone tails controlled by histone acetyltransferases, histone deacetylases, and histone demethylases (jumonji C proteins, lysine-specific histone demethylase, etc.), among others. Developments in mass spectrometry approaches and the comprehension of the interconnections between epigenetics and metabolism further increase our understanding of underlying epigenetic mechanisms, not only of exercise, but also of disease and aging. In this article, we describe several of these substrates and signaling molecules regulated by exercise that affect some of the most important epigenetic mechanisms, which, in turn, control the gene expression involved in metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vina J, Sanchis-Gomar F, Martinez-Bello V, et al. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, et al. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

    Article  PubMed  CAS  Google Scholar 

  3. Macera CA, Hootman JM, Sniezek JE. Major public health benefits of physical activity. Arthritis Rheum. 2003;49(1):122–8.

    Article  PubMed  Google Scholar 

  4. Myers J, Kaykha A, George S, et al. Fitness versus physical activity patterns in predicting mortality in men. Am J Med. 2004;117(12):912–8.

    Article  PubMed  Google Scholar 

  5. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006;16(Suppl 1):3–63.

    Article  PubMed  Google Scholar 

  6. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174(6):801–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Allis CD, Jenuwein T, Reinberg D. Epigenetics. New York: Cold Spring Harbor Laboratory Press; 2007. p. 502.

    Google Scholar 

  8. Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8.

    Article  PubMed  CAS  Google Scholar 

  9. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.

    Article  PubMed  CAS  Google Scholar 

  10. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669–81.

    Article  PubMed  CAS  Google Scholar 

  11. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293(5532):1074–80.

    Article  PubMed  CAS  Google Scholar 

  12. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Irizarry RA, Ladd-Acosta C, Wen B, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet. 2009;41(2):178–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.

    Article  PubMed  CAS  Google Scholar 

  15. Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci U S A. 2007;104(23):9667–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858):1931–4.

    Article  PubMed  CAS  Google Scholar 

  17. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  PubMed  CAS  Google Scholar 

  18. Alegria-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics. 2011;3(3):267–77.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Sanchis-Gomar F, Garcia-Gimenez JL, Perez-Quilis C, et al. Physical exercise as an epigenetic modulator: Eustress, the “positive stress” as an effector of gene expression. J Strength Cond Res. 2012;26(12):3469–72.

    Article  PubMed  Google Scholar 

  20. Talens RP, Christensen K, Putter H, et al. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell. 2012;11(4):694–703.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol. 1984;56(4):831–8.

    PubMed  CAS  Google Scholar 

  22. Barrès R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11.

    Article  PubMed  CAS  Google Scholar 

  23. Vina J, Gomez-Cabrera MC, Borras C, et al. Mitochondrial biogenesis in exercise and in ageing. Adv Drug Deliv Rev. 2009;61(14):1369–74.

    Article  PubMed  CAS  Google Scholar 

  24. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):2278–82.

    PubMed  CAS  Google Scholar 

  25. Bergeron R, Ren JM, Cadman KS, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001;281(6):E1340–6.

    PubMed  CAS  Google Scholar 

  26. Hardie DG. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med Sci Sports Exerc. 2004;36(1):28–34.

    Article  PubMed  CAS  Google Scholar 

  27. Hardie DG, Sakamoto K. AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology (Bethesda). 2006;21:48–60.

    Article  PubMed  CAS  Google Scholar 

  28. Davalos A, Goedeke L, Smibert P, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang H, Garzon R, Sun H, et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008;14(5):369–81.

    Article  PubMed  CAS  Google Scholar 

  30. Alibegovic AC, Sonne MP, Hojbjerre L, et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab. 2010;299(5):E752–63.

    Article  PubMed  CAS  Google Scholar 

  31. Alibegovic AC, Hojbjerre L, Sonne MP, et al. Impact of 9 days of bed rest on hepatic and peripheral insulin action, insulin secretion, and whole-body lipolysis in healthy young male offspring of patients with type 2 diabetes. Diabetes. 2009;58(12):2749–56.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. McKinsey TA, Zhang CL, Olson EN. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev. 2001;11(5):497–504.

    Article  PubMed  CAS  Google Scholar 

  33. McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol (1985). 2011;110(1):258–63.

    Article  CAS  Google Scholar 

  34. Egan B, Carson BP, Garcia-Roves PM, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;588(Pt 10):1779–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Puthucheary Z, Skipworth JR, Rawal J, et al. The ACE gene and human performance: 12 years on. Sports Med. 2011;41(6):433–48.

    Article  PubMed  Google Scholar 

  36. Raleigh SM. Epigenetic regulation of the ACE gene might be more relevant to endurance physiology than the I/D polymorphism. J Appl Physiol. (1985). 2012;112(6):1082–3.

    Article  CAS  Google Scholar 

  37. Rivière G, Lienhard D, Andrieu T, et al. Epigenetic regulation of somatic angiotensin-converting enzyme by DNA methylation and histone acetylation. Epigenetics. 2011;6(4):478–89.

    Article  PubMed  CAS  Google Scholar 

  38. Gibala MJ, MacLean DA, Graham TE, et al. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Physiol. 1998;275(2 Pt 1):E235–42.

    PubMed  CAS  Google Scholar 

  39. O’Hagan KA, Cocchiglia S, Zhdanov AV, et al. PGC-1alpha is coupled to HIF-1alpha-dependent gene expression by increasing mitochondrial oxygen consumption in skeletal muscle cells. Proc Natl Acad Sci U S A. 2009;106(7):2188–93.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.

    Article  PubMed  CAS  Google Scholar 

  41. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294(5545):1337–40.

    Article  PubMed  CAS  Google Scholar 

  42. Cyr AR, Domann FE. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal. 2011;15(2):551–89.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Tsukada Y, Fang J, Erdjument-Bromage H, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–6.

    Article  PubMed  CAS  Google Scholar 

  44. Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Hirsila M, Koivunen P, Gunzler V, et al. Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem. 2003;278(33):30772–80.

    Article  PubMed  CAS  Google Scholar 

  46. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324(5929):929–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324(5924):261–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Cervera AM, Bayley JP, Devilee P, et al. Inhibition of succinate dehydrogenase dysregulates histone modification in mammalian cells. Mol Cancer. 2009;8:89.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet. 2001;69(6):1186–97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res. 2003;63(17):5615–21.

    PubMed  CAS  Google Scholar 

  51. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7(1):77–85.

    Article  PubMed  CAS  Google Scholar 

  52. Brugnara L, Vinaixa M, Murillo S, et al. Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus. PLoS One. 2012;7(7):e40600.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Xiao M, Yang H, Xu W, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Berra E, Ginouves A, Pouyssegur J. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep. 2006;7(1):41–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Gerald D, Berra E, Frapart YM, et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell. 2004;118(6):781–94.

    Article  PubMed  CAS  Google Scholar 

  56. Shimazu T, Hirschey MD, Newman J, et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 2013;339(6116):211–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Zinker BA, Britz K, Brooks GA. Effects of a 36-hour fast on human endurance and substrate utilization. J Appl Physiol. 1990;69(5):1849–55.

    PubMed  CAS  Google Scholar 

  58. Koeslag JH, Noakes TD, Sloan AW. Post-exercise ketosis. J Physiol. 1980;301:79–90.

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Gupta R, Nagarajan A, Wajapeyee N. Advances in genome-wide DNA methylation analysis. Biotechniques. 2010;49(4):iii–xi.

    Google Scholar 

  60. Garcia-Gimenez JL, Sanchis-Gomar F, Lippi G, et al. Epigenetic biomarkers: a new perspective in laboratory diagnostics. Clin Chim Acta. 2012;413(19–20):1576–82.

    Article  PubMed  CAS  Google Scholar 

  61. Cocklin RR, Wang M. Identification of methylation and acetylation sites on mouse histone H3 using matrix-assisted laser desorption/ionization time-of-flight and nanoelectrospray ionization tandem mass spectrometry. J Protein Chem. 2003;22(4):327–34.

    Article  PubMed  CAS  Google Scholar 

  62. Koubaa M, Cocuron JC, Thomasset B, et al. Highlighting the tricarboxylic acid cycle: liquid and gas chromatography-mass spectrometry analyses of (13)C-labeled organic acids. Anal Biochem. 2013;436(2):151–9.

    Article  PubMed  CAS  Google Scholar 

  63. Choi J, Grossbach MT, Antoniewicz MR. Measuring complete isotopomer distribution of aspartate using gas chromatography/tandem mass spectrometry. Anal Chem. 2012;84(10):4628–32.

    Article  PubMed  CAS  Google Scholar 

  64. Koubaa M, Mghaieth S, Thomasset B, et al. Gas chromatography-mass spectrometry analysis of 13C labeling in sugars for metabolic flux analysis. Anal Biochem. 2012;425(2):183–8.

    Article  PubMed  CAS  Google Scholar 

  65. O’Grady J, Schwender J, Shachar-Hill Y, et al. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies. J Exp Bot. 2012;63(6):2293–308.

    Article  PubMed  CAS  Google Scholar 

  66. Dahl SR, Olsen KM, Strand DH. Determination of gamma-hydroxybutyrate (GHB), beta-hydroxybutyrate (BHB), pregabalin, 1,4-butane-diol (1,4BD) and gamma-butyrolactone (GBL) in whole blood and urine samples by UPLC-MSMS. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;885–886:37–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to help prepare this article. The authors have no potential conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helios Pareja-Galeano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pareja-Galeano, H., Sanchis-Gomar, F. & García-Giménez, J.L. Physical Exercise and Epigenetic Modulation: Elucidating Intricate Mechanisms. Sports Med 44, 429–436 (2014). https://doi.org/10.1007/s40279-013-0138-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-013-0138-6

Keywords

Navigation