Skip to main content
Log in

Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson’s Disease

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a chronic movement disorder typically coupled to progressive degeneration of dopaminergic neurons in the substantia nigra (SN). The treatments currently available are satisfactory for symptomatic management, but the efficacy tends to decrease as neuronal loss progresses. Neurotrophic factors (NTFs) are endogenous proteins known to promote neuronal survival, even in degenerating states. Therefore, the use of these factors is regarded as a possible therapeutic approach, which would aim to prevent PD or to even restore homeostasis in neurodegenerative disorders. Intriguingly, although favorable results in in vitro and in vivo models of the disease were attained, clinical trials using these molecules have failed to demonstrate a clear therapeutic benefit. Therefore, the development of animal models that more closely reproduce the mechanisms known to underlie PD-related neurodegeneration would be a major step towards improving the capacity to predict the clinical usefulness of a given NTF-based approach in the experimental setting. Moreover, some adjustments to the design of clinical trials ought to be considered, which include recruiting patients in the initial stages of the disease, improving the efficacy of the delivery methods, and combining synergetic NTFs or adding NTF-boosting drugs to the already available pharmacological approaches. Despite the drawbacks on the road to the use of NTFs as pharmacological tools for PD, very relevant achievements have been reached. In this article, we review the current status of the potential relevance of NTFs for treating PD, taking into consideration experimental evidence, human observational studies, and data from clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.

    PubMed  Google Scholar 

  2. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.

    PubMed  CAS  Google Scholar 

  3. Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5(3):235–45.

    PubMed  Google Scholar 

  4. Gasser T. Update on the genetics of Parkinson’s disease. Mov Disord. 2007;22(Suppl 17):S343–50.

    PubMed  Google Scholar 

  5. Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445–54.

    PubMed  CAS  Google Scholar 

  6. Martin I, Dawson VL, Dawson TM. Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet. 2011;12:301–25.

    PubMed  CAS  Google Scholar 

  7. Irizarry MC, Growdon W, Gomez-Isla T, Newell K, George JM, Clayton DF, et al. Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J Neuropathol Exp Neurol. 1998;57(4):334–7.

    PubMed  CAS  Google Scholar 

  8. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.

    PubMed  CAS  Google Scholar 

  9. Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet JC, et al. Small heat shock proteins protect against alpha-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun. 2006;351(3):631–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry. 2002;41(32):10209–17.

    PubMed  CAS  Google Scholar 

  11. Outeiro TF, Putcha P, Tetzlaff JE, Spoelgen R, Koker M, Carvalho F, et al. Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One. 2008;3(4):e1867.

    PubMed Central  PubMed  Google Scholar 

  12. Klucken J, Outeiro TF, Nguyen P, McLean PJ, Hyman BT. Detection of novel intracellular alpha-synuclein oligomeric species by fluorescence lifetime imaging. FASEB J. 2006;20(12):2050–7.

    PubMed  CAS  Google Scholar 

  13. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002;295(5556):865–8.

    PubMed  CAS  Google Scholar 

  14. Clayton DF, George JM. Synucleins in synaptic plasticity and neurodegenerative disorders. J Neurosci Res. 1999;58(1):120–9.

    PubMed  CAS  Google Scholar 

  15. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4(2):160–4.

    PubMed  CAS  Google Scholar 

  16. Conway KA, Harper JD, Lansbury PT Jr. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry. 2000;39(10):2552–63.

    PubMed  CAS  Google Scholar 

  17. Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, et al. Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol. 2002;322(5):1089–102.

    PubMed  CAS  Google Scholar 

  18. Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem. 2001;276(14):10737–44.

    PubMed  CAS  Google Scholar 

  19. Cookson MR. The biochemistry of Parkinson’s disease. Annu Rev Biochem. 2005;74:29–52.

    PubMed  CAS  Google Scholar 

  20. El-Agnaf OM, Salem SA, Paleologou KE, Cooper LJ, Fullwood NJ, Gibson MJ, et al. Alpha-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. Faseb J. 2003;17(13):1945–7.

    PubMed  CAS  Google Scholar 

  21. Lansbury PT Jr, Brice A. Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Cell Biol. 2002;14(5):653–60.

    PubMed  CAS  Google Scholar 

  22. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317(5837):516–9.

    PubMed  CAS  Google Scholar 

  23. Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32(34):11750–62.

    Google Scholar 

  24. Teng KK, Felice S, Kim T, Hempstead BL. Understanding proneurotrophin actions: recent advances and challenges. Dev Neurobiol. 2010;70(5):350–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Kaplan DR, Martin-Zanca D, Parada LF. Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF. Nature. 1991;350(6314):158–60.

    PubMed  CAS  Google Scholar 

  26. Klein R, Jing SQ, Nanduri V, O’Rourke E, Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991;65(1):189–97.

    PubMed  CAS  Google Scholar 

  27. Berkemeier LR, Winslow JW, Kaplan DR, Nikolics K, Goeddel DV, Rosenthal A. Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron. 1991;7(5):857–66.

    PubMed  CAS  Google Scholar 

  28. Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, Radziejewski C, et al. trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell. 1991;65(5):885–93.

    PubMed  CAS  Google Scholar 

  29. Lamballe F, Klein R, Barbacid M. trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell. 1991;66(5):967–79.

    PubMed  CAS  Google Scholar 

  30. Arevalo JC, Wu SH. Neurotrophin signaling: many exciting surprises! Cell Mol Life Sci. 2006;63(13):1523–37.

    PubMed  CAS  Google Scholar 

  31. Ebendal T. NGF in CNS: experimental data and clinical implications. Prog Growth Factor Res. 1989;1(3):143–59.

    PubMed  CAS  Google Scholar 

  32. Thoenen H, Barde YA. Physiology of nerve growth factor. Physiol Rev. 1980;60(4):1284–335.

    PubMed  CAS  Google Scholar 

  33. Knusel B, Winslow JW, Rosenthal A, Burton LE, Seid DP, Nikolics K, et al. Promotion of central cholinergic and dopaminergic neuron differentiation by brain-derived neurotrophic factor but not neurotrophin 3. Proc Natl Acad Sci U S A. 1991;88(3):961–5.

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Knusel B, Michel PP, Schwaber JS, Hefti F. Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci. 1990;10(2):558–70.

    PubMed  CAS  Google Scholar 

  35. Studer L, Spenger C, Seiler RW, Altar CA, Lindsay RM, Hyman C. Comparison of the effects of the neurotrophins on the morphological structure of dopaminergic neurons in cultures of rat substantia nigra. Eur J Neurosci. 1995;7(2):223–33.

    PubMed  CAS  Google Scholar 

  36. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350(6315):230–2.

    PubMed  CAS  Google Scholar 

  37. Garcia E, Rios C, Sotelo J. Ventricular injection of nerve growth factor increases dopamine content in the striata of MPTP-treated mice. Neurochem Res. 1992;17(10):979–82.

    PubMed  CAS  Google Scholar 

  38. Kirschner PB, Jenkins BG, Schulz JB, Finkelstein SP, Matthews RT, Rosen BR, et al. NGF, BDNF and NT-5, but not NT-3 protect against MPP+ toxicity and oxidative stress in neonatal animals. Brain Res. 1996;713(1–2):178–85.

    PubMed  CAS  Google Scholar 

  39. Chaturvedi RK, Shukla S, Seth K, Agrawal AK. Nerve growth factor increases survival of dopaminergic graft, rescue nigral dopaminergic neurons and restores functional deficits in rat model of Parkinson’s disease. Neurosci Lett. 2006;398(1–2):44–9.

    PubMed  CAS  Google Scholar 

  40. Salinas M, Diaz R, Abraham NG, Ruiz de Galarreta CM, Cuadrado A. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem. 2003;278(16):13898–904.

    Google Scholar 

  41. Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, et al. Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson’s disease. Neurosci Lett. 1999;270(1):45–8.

    PubMed  CAS  Google Scholar 

  42. Lorigados Pedre L, Pavon Fuentes N, Alvarez Gonzalez L, McRae A, Serrano Sanchez T, Blanco Lescano L, et al. Nerve growth factor levels in Parkinson disease and experimental parkinsonian rats. Brain Res. 2002;952(1):122–7.

    Google Scholar 

  43. Date I, Ohmoto T. Neural transplantation and trophic factors in Parkinson’s disease: special reference to chromaffin cell grafting, NGF support from pretransected peripheral nerve, and encapsulated dopamine-secreting cell grafting. Exp Neurol. 1996;137(2):333–44.

    PubMed  CAS  Google Scholar 

  44. Seroogy KB, Lundgren KH, Tran TM, Guthrie KM, Isackson PJ, Gall CM. Dopaminergic neurons in rat ventral midbrain express brain-derived neurotrophic factor and neurotrophin-3 mRNAs. J Comp Neurol. 1994;342(3):321–34.

    PubMed  CAS  Google Scholar 

  45. Zhang HT, Li LY, Zou XL, Song XB, Hu YL, Feng ZT, et al. Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult rhesus monkey brains. J Histochem Cytochem. 2007;55(1):1–19.

    PubMed  Google Scholar 

  46. Baquet ZC, Bickford PC, Jones KR. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J Neurosci. 2005;25(26):6251–9.

    PubMed  CAS  Google Scholar 

  47. Baydyuk M, Nguyen MT, Xu B. Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp Neurol. 2011;228(1):118–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Hyman C, Juhasz M, Jackson C, Wright P, Ip NY, Lindsay RM. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J Neurosci. 1994;14(1):335–47.

    PubMed  CAS  Google Scholar 

  49. Spina MB, Squinto SP, Miller J, Lindsay RM, Hyman C. Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem. 1992;59(1):99–106.

    PubMed  CAS  Google Scholar 

  50. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A. 2010;107(6):2687–92.

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Levivier M, Przedborski S, Bencsics C, Kang UJ. Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci. 1995;15(12):7810–20.

    PubMed  CAS  Google Scholar 

  52. Tsukahara T, Takeda M, Shimohama S, Ohara O, Hashimoto N. Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurgery. 1995;37(4):733–9; discussion 9–41.

    Google Scholar 

  53. Shults CW, Kimber T, Altar CA. BDNF attenuates the effects of intrastriatal injection of 6-hydroxydopamine. Neuroreport. 1995;6(8):1109–12.

    PubMed  CAS  Google Scholar 

  54. Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci U S A. 1994;91(11):5104–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Ding YX, Xia Y, Jiao XY, Duan L, Yu J, Wang X, et al. The TrkB-positive dopaminergic neurons are less sensitive to MPTP insult in the substantia nigra of adult C57/BL mice. Neurochem Res. 2011;36(10):1759–66.

    PubMed  CAS  Google Scholar 

  56. von Bohlen und Halbach O, Minichiello L, Unsicker K. Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J. 2005;19(12):1740–2.

  57. Okazawa H, Murata M, Watanabe M, Kamei M, Kanazawa I. Dopaminergic stimulation up-regulates the in vivo expression of brain-derived neurotrophic factor (BDNF) in the striatum. FEBS Lett. 1992;313(2):138–42.

    PubMed  CAS  Google Scholar 

  58. Zhang X, Andren PE, Svenningsson P. Repeated l-Dopa treatment increases c-fos and BDNF mRNAs in the subthalamic nucleus in the 6-OHDA rat model of Parkinson’s disease. Brain Res. 2006;1095(1):207–10.

    PubMed  CAS  Google Scholar 

  59. Hynes MA, Poulsen K, Armanini M, Berkemeier L, Phillips H, Rosenthal A. Neurotrophin-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures. J Neurosci Res. 1994;37(1):144–54.

    PubMed  CAS  Google Scholar 

  60. Lingor P, Unsicker K, Krieglstein K. GDNF and NT-4 protect midbrain dopaminergic neurons from toxic damage by iron and nitric oxide. Exp Neurol. 2000;163(1):55–62.

    PubMed  CAS  Google Scholar 

  61. Haque NS, Hlavin ML, Fawcett JW, Dunnett SB. The neurotrophin NT4/5, but not NT3, enhances the efficacy of nigral grafts in a rat model of Parkinson’s disease. Brain Res. 1996;712(1):45–52.

    PubMed  CAS  Google Scholar 

  62. Gu S, Huang H, Bi J, Yao Y, Wen T. Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res. 2009;27(1257):1–9.

    CAS  Google Scholar 

  63. Altar CA, Boylan CB, Fritsche M, Jones BE, Jackson C, Wiegand SJ, et al. Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J Neurochem. 1994;63(3):1021–32.

    PubMed  CAS  Google Scholar 

  64. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130–2.

    PubMed  CAS  Google Scholar 

  65. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature. 1996;384(6608):467–70.

    PubMed  CAS  Google Scholar 

  66. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron. 1998;21(6):1291–302.

    PubMed  CAS  Google Scholar 

  67. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron. 1998;20(2):245–53.

    PubMed  CAS  Google Scholar 

  68. Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci. 2003;116(Pt 19):3855–62.

    PubMed  CAS  Google Scholar 

  69. Ledda F, Paratcha G, Ibanez CF. Target-derived GFRalpha1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron. 2002;36(3):387–401.

    PubMed  CAS  Google Scholar 

  70. Paratcha G, Ledda F, Baars L, Coulpier M, Besset V, Anders J, et al. Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron. 2001;29(1):171–84.

    PubMed  CAS  Google Scholar 

  71. Paratcha G, Ledda F, Ibanez CF. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell. 2003;113(7):867–79.

    PubMed  CAS  Google Scholar 

  72. Akerud P, Alberch J, Eketjall S, Wagner J, Arenas E. Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem. 1999;73(1):70–8.

    PubMed  CAS  Google Scholar 

  73. Hou JG, Lin LF, Mytilineou C. Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. J Neurochem. 1996;66(1):74–82.

    PubMed  CAS  Google Scholar 

  74. Pascual A, Hidalgo-Figueroa M, Piruat JI, Pintado CO, Gomez-Diaz R, Lopez-Barneo J. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci. 2008;11(7):755–61.

    PubMed  CAS  Google Scholar 

  75. Eggert K, Schlegel J, Oertel W, Wurz C, Krieg JC, Vedder H. Glial cell line-derived neurotrophic factor protects dopaminergic neurons from 6-hydroxydopamine toxicity in vitro. Neurosci Lett. 1999;269(3):178–82.

    PubMed  CAS  Google Scholar 

  76. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995;373(6512):335–9.

    PubMed  CAS  Google Scholar 

  77. Eslamboli A, Georgievska B, Ridley RM, Baker HF, Muzyczka N, Burger C, et al. Continuous low-level glial cell line-derived neurotrophic factor delivery using recombinant adeno-associated viral vectors provides neuroprotection and induces behavioral recovery in a primate model of Parkinson’s disease. J Neurosci. 2005;25(4):769–77.

    PubMed  CAS  Google Scholar 

  78. Aoi M, Date I, Tomita S, Ohmoto T. Single or continuous injection of glial cell line-derived neurotrophic factor in the striatum induces recovery of the nigrostriatal dopaminergic system. Neurol Res. 2000;22(8):832–6.

    PubMed  CAS  Google Scholar 

  79. Kirik D, Georgievska B, Rosenblad C, Bjorklund A. Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson’s disease. Eur J Neurosci. 2001;13(8):1589–99.

    PubMed  CAS  Google Scholar 

  80. Ren Z, Wang J, Wang S, Zou C, Li X, Guan Y, et al. Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci Rep. 2013;3:2786.

    PubMed  Google Scholar 

  81. Horger BA, Nishimura MC, Armanini MP, Wang LC, Poulsen KT, Rosenblad C, et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci. 1998;18(13):4929–37.

    PubMed  CAS  Google Scholar 

  82. Oiwa Y, Yoshimura R, Nakai K, Itakura T. Dopaminergic neuroprotection and regeneration by neurturin assessed by using behavioral, biochemical and histochemical measurements in a model of progressive Parkinson’s disease. Brain Res. 2002;947(2):271–83.

    PubMed  CAS  Google Scholar 

  83. Liu WG, Lu GQ, Li B, Chen SD. Dopaminergic neuroprotection by neurturin-expressing c17.2 neural stem cells in a rat model of Parkinson’s disease. Parkinsonism Relat Disord. 2007;13(2):77–88.

    PubMed  Google Scholar 

  84. Kordower JH, Herzog CD, Dass B, Bakay RA, Stansell J 3rd, Gasmi M, et al. Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol. 2006;60(6):706–15.

    PubMed  CAS  Google Scholar 

  85. Grondin R, Zhang Z, Ai Y, Ding F, Walton AA, Surgener SP, et al. Intraputamenal infusion of exogenous neurturin protein restores motor and dopaminergic function in the globus pallidus of MPTP-lesioned rhesus monkeys. Cell Transplant. 2008;17(4):373–81.

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Rosenblad C, Gronborg M, Hansen C, Blom N, Meyer M, Johansen J, et al. In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol Cell Neurosci. 2000;15(2):199–214.

    PubMed  CAS  Google Scholar 

  87. Zihlmann KB, Ducray AD, Schaller B, Huber AW, Krebs SH, Andres RH, et al. The GDNF family members neurturin, artemin and persephin promote the morphological differentiation of cultured ventral mesencephalic dopaminergic neurons. Brain Res Bull. 2005;68(1–2):42–53.

    PubMed  CAS  Google Scholar 

  88. Akerud P, Holm PC, Castelo-Branco G, Sousa K, Rodriguez FJ, Arenas E. Persephin-overexpressing neural stem cells regulate the function of nigral dopaminergic neurons and prevent their degeneration in a model of Parkinson’s disease. Mol Cell Neurosci. 2002;21(2):205–22.

    PubMed  CAS  Google Scholar 

  89. Petrova P, Raibekas A, Pevsner J, Vigo N, Anafi M, Moore MK, et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci. 2003;20(2):173–88.

    PubMed  CAS  Google Scholar 

  90. Lindholm P, Voutilainen MH, Lauren J, Peranen J, Leppanen VM, Andressoo JO, et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007;448(7149):73–7.

    PubMed  CAS  Google Scholar 

  91. Lindholm P, Peranen J, Andressoo JO, Kalkkinen N, Kokaia Z, Lindvall O, et al. MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol Cell Neurosci. 2008;39(3):356–71.

    PubMed  CAS  Google Scholar 

  92. Airavaara M, Harvey BK, Voutilainen MH, Shen H, Chou J, Lindholm P, et al. CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant. 2012;21(6):1213–23.

    PubMed Central  PubMed  Google Scholar 

  93. Back S, Peranen J, Galli E, Pulkkila P, Lonka-Nevalaita L, Tamminen T, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson’s disease. Brain Behav. 2013;3(2):75–88.

    PubMed Central  PubMed  Google Scholar 

  94. Voutilainen MH, Back S, Peranen J, Lindholm P, Raasmaja A, Mannisto PT, et al. Chronic infusion of CDNF prevents 6-OHDA-induced deficits in a rat model of Parkinson’s disease. Exp Neurol. 2011;228(1):99–108.

    PubMed  CAS  Google Scholar 

  95. Voutilainen MH, Back S, Porsti E, Toppinen L, Lindgren L, Lindholm P, et al. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci. 2009;29(30):9651–9.

    PubMed  CAS  Google Scholar 

  96. Hellman M, Arumae U, Yu LY, Lindholm P, Peranen J, Saarma M, et al. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem. 2011;286(4):2675–80.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, et al. Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol. 2000;166(1):127–35.

    PubMed  CAS  Google Scholar 

  98. Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, et al. Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport. 1999;10(3):557–61.

    PubMed  CAS  Google Scholar 

  99. Foltynie T, Lewis SG, Goldberg TE, Blackwell AD, Kolachana BS, Weinberger DR, et al. The BDNF Val66 Met polymorphism has a gender specific influence on planning ability in Parkinson’s disease. J Neurol. 2005;252(7):833–8.

    PubMed  CAS  Google Scholar 

  100. Foltynie T, Cheeran B, Williams-Gray CH, Edwards MJ, Schneider SA, Weinberger D, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009;80(2):141–4.

    PubMed  CAS  Google Scholar 

  101. Parsian A, Sinha R, Racette B, Zhao JH, Perlmutter JS. Association of a variation in the promoter region of the brain-derived neurotrophic factor gene with familial Parkinson’s disease. Parkinsonism Relat Disord. 2004;10(4):213–9.

    PubMed  Google Scholar 

  102. Toda T, Momose Y, Murata M, Tamiya G, Yamamoto M, Hattori N, et al. Toward identification of susceptibility genes for sporadic Parkinson’s disease. J Neurol. 2003;250 Suppl 3:III40–3.

    Google Scholar 

  103. Chen L, Wang Y, Xiao H, Wang L, Wang C, Guo S, et al. The 712A/G polymorphism of brain-derived neurotrophic factor is associated with Parkinson’s disease but not major depressive disorder in a Chinese Han population. Biochem Biophys Res Commun. 2011;408(2):318–21.

    PubMed  CAS  Google Scholar 

  104. Karamohamed S, Latourelle JC, Racette BA, Perlmutter JS, Wooten GF, Lew M, et al. BDNF genetic variants are associated with onset age of familial Parkinson disease: GenePD Study. Neurology. 2005;65(11):1823–5.

    PubMed  CAS  Google Scholar 

  105. Momose Y, Murata M, Kobayashi K, Tachikawa M, Nakabayashi Y, Kanazawa I, et al. Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Ann Neurol. 2002;51(1):133–6.

    PubMed  CAS  Google Scholar 

  106. Guerini FR, Beghi E, Riboldazzi G, Zangaglia R, Pianezzola C, Bono G, et al. BDNF Val66Met polymorphism is associated with cognitive impairment in Italian patients with Parkinson’s disease. Eur J Neurol. 2009;16(11):1240–5.

    PubMed  CAS  Google Scholar 

  107. Liu J, Zhou Y, Wang C, Wang T, Zheng Z, Chan P. Brain-derived neurotrophic factor (BDNF) genetic polymorphism greatly increases risk of leucine-rich repeat kinase 2 (LRRK2) for Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(2):140–3.

    PubMed  Google Scholar 

  108. Wirdefeldt K, Burgess CE, Westerberg L, Payami H, Schalling M. A linkage study of candidate loci in familial Parkinson’s Disease. BMC Neurol. 2003;26(3):6.

    Google Scholar 

  109. Gasser T, Wszolek ZK, Trofatter J, Ozelius L, Uitti RJ, Lee CS, et al. Genetic linkage studies in autosomal dominant parkinsonism: evaluation of seven candidate genes. Ann Neurol. 1994;36(3):387–96.

    PubMed  CAS  Google Scholar 

  110. Karakasis C, Kalinderi K, Katsarou Z, Fidani L, Bostantjopoulou S. Association of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism with Parkinson’s disease in a Greek population. J Clin Neurosci. 2011;18(12):1744–5.

    PubMed  CAS  Google Scholar 

  111. Liu QR, Walther D, Drgon T, Polesskaya O, Lesnick TG, Strain KJ, et al. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson’s Disease. Am J Med Genet B Neuropsychiatr Genet. 2005;134B(1):93–103.

    PubMed  Google Scholar 

  112. Masaki T, Matsushita S, Arai H, Takeda A, Itoyama Y, Mochizuki H, et al. Association between a polymorphism of brain-derived neurotrophic factor gene and sporadic Parkinson’s disease. Ann Neurol. 2003;54(2):276–7.

    PubMed  CAS  Google Scholar 

  113. Nishimura M, Kuno S, Kaji R, Kawakami H. Brain-derived neurotrophic factor gene polymorphisms in Japanese patients with sporadic Alzheimer’s disease, Parkinson’s disease, and multiple system atrophy. Mov Disord. 2005;20(8):1031–3.

    PubMed  Google Scholar 

  114. Hakansson A, Melke J, Westberg L, Shahabi HN, Buervenich S, Carmine A, et al. Lack of association between the BDNF Val66Met polymorphism and Parkinson’s disease in a Swedish population. Ann Neurol. 2003;53(6):823.

    PubMed  Google Scholar 

  115. Hong CJ, Liu HC, Liu TY, Lin CH, Cheng CY, Tsai SJ. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in Parkinson’s disease and age of onset. Neurosci Lett. 2003;353(1):75–7.

    PubMed  CAS  Google Scholar 

  116. Saarela MS, Lehtimaki T, Rinne JO, Huhtala H, Rontu R, Hervonen A, et al. No association between the brain-derived neurotrophic factor 196 G>A or 270 C>T polymorphisms and Alzheimer’s or Parkinson’s disease. Folia Neuropathol. 2006;44(1):12–6.

    PubMed  CAS  Google Scholar 

  117. Chen CM, Chen IC, Chang KH, Chen YC, Lyu RK, Liu YT, et al. Nuclear receptor NR4A2 IVS6 +18insG and brain derived neurotrophic factor (BDNF) V66M polymorphisms and risk of Taiwanese Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet. 2007;144B(4):458–62.

    PubMed  CAS  Google Scholar 

  118. Gao L, Diaz-Corrales FJ, Carrillo F, Diaz-Martin J, Caceres-Redondo MT, Carballo M, et al. Brain-derived neurotrophic factor G196A polymorphism and clinical features in Parkinson’s disease. Acta Neurol Scand. 2010;122(1):41–5.

    PubMed  CAS  Google Scholar 

  119. Xiromerisiou G, Hadjigeorgiou GM, Eerola J, Fernandez HH, Tsimourtou V, Mandel R, et al. BDNF tagging polymorphisms and haplotype analysis in sporadic Parkinson’s disease in diverse ethnic groups. Neurosci Lett. 2007;415(1):59–63.

    PubMed  CAS  Google Scholar 

  120. Zintzaras E, Hadjigeorgiou GM. The role of G196A polymorphism in the brain-derived neurotrophic factor gene in the cause of Parkinson’s disease: a meta-analysis. J Hum Genet. 2005;50(11):560–6.

    PubMed  CAS  Google Scholar 

  121. Wartiovaara K, Hytonen M, Vuori M, Paulin L, Rinne J, Sariola H. Mutation analysis of the glial cell line-derived neurotrophic factor gene in Parkinson’s disease. Exp Neurol. 1998;152(2):307–9.

    PubMed  CAS  Google Scholar 

  122. Lucking CB, Lichtner P, Kramer ER, Gieger C, Illig T, Dichgans M, et al. Polymorphisms in the receptor for GDNF (RET) are not associated with Parkinson’s disease in Southern Germany. Neurobiol Aging. 2010;31(1):167–8.

    PubMed  CAS  Google Scholar 

  123. Hunot S, Bernard V, Faucheux B, Boissiere F, Leguern E, Brana C, et al. Glial cell line-derived neurotrophic factor (GDNF) gene expression in the human brain: a post mortem in situ hybridization study with special reference to Parkinson’s disease. J Neural Transm. 1996;103(8–9):1043–52.

    PubMed  CAS  Google Scholar 

  124. Souza RP, de Luca V, Remington G, Lieberman JA, Meltzer HY, Kennedy JL, et al. Glial cell line-derived neurotrophic factor receptor alpha 2 (GFRA2) gene is associated with tardive dyskinesia. Psychopharmacology (Berl). 2010;210(3):347–54.

    PubMed  CAS  Google Scholar 

  125. Fusco D, Vargiolu M, Vidone M, Mariani E, Pennisi LF, Bonora E, et al. The RET51/FKBP52 complex and its involvement in Parkinson disease. Hum Mol Genet. 2010;19(14):2804–16.

    PubMed  CAS  Google Scholar 

  126. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60(1):69–73.

    PubMed  CAS  Google Scholar 

  127. Bjorklund T, Kirik D. Scientific rationale for the development of gene therapy strategies for Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):703–13.

    PubMed  Google Scholar 

  128. Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol. 1999;46(3):419–24.

    PubMed  CAS  Google Scholar 

  129. Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988;318(14):876–80.

    PubMed  CAS  Google Scholar 

  130. Vastag B. Biotechnology: crossing the barrier. Nature. 2010;466(7309):916–8.

    PubMed  Google Scholar 

  131. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003;9(5):589–95.

    PubMed  CAS  Google Scholar 

  132. Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS. Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med. 2005;11(7):703–4.

    PubMed  CAS  Google Scholar 

  133. Patel NK, Bunnage M, Plaha P, Svendsen CN, Heywood P, Gill SS. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol. 2005;57(2):298–302.

    PubMed  CAS  Google Scholar 

  134. Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg. 2005;102(2):216–22.

    PubMed  CAS  Google Scholar 

  135. Slevin JT, Gash DM, Smith CD, Gerhardt GA, Kryscio R, Chebrolu H, et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J Neurosurg. 2007;106(4):614–20.

    PubMed  CAS  Google Scholar 

  136. Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol. 2006;59(3):459–66.

    PubMed  CAS  Google Scholar 

  137. Barker RA. Parkinson’s disease and growth factors—are they the answer? Parkinsonism Relat Disord. 2009;15(Suppl 3):S181–4.

    PubMed  Google Scholar 

  138. Hutchinson M, Gurney S, Newson R. GDNF in Parkinson disease: an object lesson in the tyranny of type II. J Neurosci Methods. 2007;163(2):190–2.

    PubMed  CAS  Google Scholar 

  139. Tatarewicz SM, Wei X, Gupta S, Masterman D, Swanson SJ, Moxness MS. Development of a maturing T-cell-mediated immune response in patients with idiopathic Parkinson’s disease receiving r-metHuGDNF via continuous intraputaminal infusion. J Clin Immunol. 2007;27(6):620–7.

    PubMed  Google Scholar 

  140. Sherer TB, Fiske BK, Svendsen CN, Lang AE, Langston JW. Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord. 2006;21(2):136–41.

    PubMed  Google Scholar 

  141. Chebrolu H, Slevin JT, Gash DA, Gerhardt GA, Young B, Given CA, et al. MRI volumetric and intensity analysis of the cerebellum in Parkinson’s disease patients infused with glial-derived neurotrophic factor (GDNF). Exp Neurol. 2006;198(2):450–6.

    PubMed  CAS  Google Scholar 

  142. The hard way to a Bill of Rights. Lancet Neurol. 2005;4(12):787.

  143. Lang AE, Langston JW, Stoessl AJ, Brodsky M, Brooks DJ, Dhawan V, et al. GDNF in treatment of Parkinson’s disease: response to editorial. Lancet Neurol. 2006;5(3):200–2.

    PubMed  Google Scholar 

  144. Marks WJ Jr, Ostrem JL, Verhagen L, Starr PA, Larson PS, Bakay RA, et al. Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol. 2008;7(5):400–8.

    PubMed  Google Scholar 

  145. Marks WJ Jr, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9(12):1164–72.

    PubMed  CAS  Google Scholar 

  146. Bartus RT, Herzog CD, Chu Y, Wilson A, Brown L, Siffert J, et al. Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson’s disease and nonhuman primate brains. Mov Disord. 2011;26(1):27–36.

    PubMed  Google Scholar 

  147. Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N, et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology. 2013;80(18):1698–701.

    PubMed  CAS  Google Scholar 

  148. Choi JM, Hong JH, Chae MJ, Ngyuen PH, Kang HS, Ma HI, et al. Analysis of mutations and the association between polymorphisms in the cerebral dopamine neurotrophic factor (CDNF) gene and Parkinson disease. Neurosci Lett. 2011;493(3):97–101.

    PubMed  CAS  Google Scholar 

  149. Saavedra A, Baltazar G, Duarte EP. Driving GDNF expression: the green and the red traffic lights. Prog Neurobiol. 2008;86(3):186–215.

    PubMed  CAS  Google Scholar 

  150. Weinreb O, Amit T, Bar-Am O, Youdim MB. Induction of neurotrophic factors GDNF and BDNF associated with the mechanism of neurorescue action of rasagiline and ladostigil: new insights and implications for therapy. Ann N Y Acad Sci. 2007;1122:155–68.

    PubMed  CAS  Google Scholar 

  151. Przedborski S, Vila M. MPTP: a review of its mechanisms of neurotoxicity. Clin Neurosci Res. 2001;1(6):407–18.

    CAS  Google Scholar 

  152. Parkinson-Study-Group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson disease. Arch Neurol. 2004;61(4):561–6.

  153. Olanow CW, Rascol O, Hauser R, Feigin PD, Jankovic J, Lang A, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N Engl J Med. 2009;361(13):1268–78.

    PubMed  CAS  Google Scholar 

  154. Rascol O, Fitzer-Attas CJ, Hauser R, Jankovic J, Lang A, Langston JW, et al. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease (the ADAGIO study): prespecified and post-hoc analyses of the need for additional therapies, changes in UPDRS scores, and non-motor outcomes. Lancet Neurol. 2011;10(5):415–23.

    PubMed  CAS  Google Scholar 

  155. Visanji NP, Orsi A, Johnston TH, Howson PA, Dixon K, Callizot N, et al. PYM50028, a novel, orally active, nonpeptide neurotrophic factor inducer, prevents and reverses neuronal damage induced by MPP+ in mesencephalic neurons and by MPTP in a mouse model of Parkinson’s disease. FASEB J. 2008;22(7):2488–97.

    PubMed  CAS  Google Scholar 

  156. Hirsch EC. Animal models in neurodegenerative diseases. J Neural Transm Suppl. 2007;72:87–90.

    PubMed  CAS  Google Scholar 

  157. Soderstrom K, O’Malley J, Steece-Collier K, Kordower JH. Neural repair strategies for Parkinson’s disease: insights from primate models. Cell Transplant. 2006;15(3):251–65.

    PubMed  Google Scholar 

  158. Forno LS, DeLanney LE, Irwin I, Langston JW. Similarities and differences between MPTP-induced parkinsonsim and Parkinson’s disease. Neuropathologic considerations. Adv Neurol. 1993;60:600–8.

    PubMed  CAS  Google Scholar 

  159. Speciale SG. MPTP: insights into parkinsonian neurodegeneration. Neurotoxicol Teratol. 2002;24(5):607–20.

    Google Scholar 

  160. Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disord. 2013;28(1):61–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  161. Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  162. Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66(5):646–61.

    PubMed Central  PubMed  CAS  Google Scholar 

  163. Piltonen M, Bespalov MM, Ervasti D, Matilainen T, Sidorova YA, Rauvala H, et al. Heparin-binding determinants of GDNF reduce its tissue distribution but are beneficial for the protection of nigral dopaminergic neurons. Exp Neurol. 2009;219(2):499–506.

    PubMed  CAS  Google Scholar 

  164. Gash DM, Zhang Z, Ai Y, Grondin R, Coffey R, Gerhardt GA. Trophic factor distribution predicts functional recovery in parkinsonian monkeys. Ann Neurol. 2005;58(2):224–33.

    PubMed  CAS  Google Scholar 

  165. Kirik D, Winkler C, Bjorklund A. Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci. 2001;21(8):2889–96.

    PubMed  CAS  Google Scholar 

  166. Aoi M, Date I, Tomita S, Ohmoto T. The effect of intrastriatal single injection of GDNF on the nigrostriatal dopaminergic system in hemiparkinsonian rats: behavioral and histological studies using two different dosages. Neurosci Res. 2000;36(4):319–25.

    PubMed  CAS  Google Scholar 

  167. Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandaca MS, Larson PS, et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther. 2011;19(6):1048–57.

    PubMed Central  PubMed  CAS  Google Scholar 

  168. Deierborg T, Soulet D, Roybon L, Hall V, Brundin P. Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol. 2008;85(4):407–32.

    PubMed  CAS  Google Scholar 

  169. Yasuhara T, Shingo T, Muraoka K, Kobayashi K, Takeuchi A, Yano A, et al. Early transplantation of an encapsulated glial cell line-derived neurotrophic factor-producing cell demonstrating strong neuroprotective effects in a rat model of Parkinson disease. J Neurosurg. 2005;102(1):80–9.

    PubMed  Google Scholar 

  170. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    PubMed  CAS  Google Scholar 

  171. Evans JR, Barker RA. Neurotrophic factors as a therapeutic target for Parkinson’s disease. Expert Opin Ther Targets. 2008;12(4):437–47.

    PubMed  CAS  Google Scholar 

  172. Barker RA. Continuing trials of GDNF in Parkinson’s disease. Lancet Neurol. 2006;5(4):285–6.

    PubMed  Google Scholar 

  173. Schober A, Peterziel H, von Bartheld CS, Simon H, Krieglstein K, Unsicker K. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis. 2007;25(2):378–91.

    PubMed  CAS  Google Scholar 

  174. Lee FS, Chao MV. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A. 2001;98(6):3555–60.

    PubMed Central  PubMed  CAS  Google Scholar 

  175. Diogenes MJ, Assaife-Lopes N, Pinto-Duarte A, Ribeiro JA, Sebastiao AM. Influence of age on BDNF modulation of hippocampal synaptic transmission: interplay with adenosine A2A receptors. Hippocampus. 2007;17(7):577–85.

    PubMed  CAS  Google Scholar 

  176. Diogenes MJ, Costenla AR, Lopes LV, Jeronimo-Santos A, Sousa VC, Fontinha BM, et al. Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology. 2011;36(9):1823–36.

    PubMed Central  PubMed  CAS  Google Scholar 

  177. Diogenes MJ, Fernandes CC, Sebastiao AM, Ribeiro JA. Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci. 2004;24(12):2905–13.

    PubMed  CAS  Google Scholar 

  178. Fontinha BM, Diogenes MJ, Ribeiro JA, Sebastiao AM. Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology. 2008;54(6):924–33.

    PubMed  CAS  Google Scholar 

  179. Tebano MT, Martire A, Potenza RL, Gro C, Pepponi R, Armida M, et al. Adenosine A(2A) receptors are required for normal BDNF levels and BDNF-induced potentiation of synaptic transmission in the mouse hippocampus. J Neurochem. 2008;104(1):279–86.

    PubMed  CAS  Google Scholar 

  180. Gomes CA, Vaz SH, Ribeiro JA, Sebastiao AM. Glial cell line-derived neurotrophic factor (GDNF) enhances dopamine release from striatal nerve endings in an adenosine A2A receptor-dependent manner. Brain Res. 2006;1113(1):129–36.

    PubMed  CAS  Google Scholar 

  181. Pousinha PA, Diogenes MJ, Ribeiro JA, Sebastiao AM. Triggering of BDNF facilitatory action on neuromuscular transmission by adenosine A2A receptors. Neurosci Lett. 2006;404(1–2):143–7.

    PubMed  CAS  Google Scholar 

  182. Assaife-Lopes N, Sousa VC, Pereira DB, Ribeiro JA, Sebastiao AM. Regulation of TrkB receptor translocation to lipid rafts by adenosine A receptors and its functional implications for BDNF-induced regulation of synaptic plasticity. Purinergic Signal. 2013. http://dx.doi.org/10.1007/s11302-013-9383-2

  183. Rodrigues TM, Jeronimo-Santos A, Sebastiao AM, Diogenes MJ. Adenosine A Receptors as novel upstream regulators of BDNF-mediated attenuation of hippocampal Long-Term Depression (LTD). Neuropharmacology. 2013;18(79C):389–98.

    Google Scholar 

  184. Rosenblad C, Martinez-Serrano A, Bjorklund A. Glial cell line-derived neurotrophic factor increases survival, growth and function of intrastriatal fetal nigral dopaminergic grafts. Neuroscience. 1996;75(4):979–85.

    PubMed  CAS  Google Scholar 

  185. Sinclair SR, Svendsen CN, Torres EM, Martin D, Fawcett JW, Dunnett SB. GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. Neuroreport. 1996;7(15–17):2547–52.

    PubMed  CAS  Google Scholar 

  186. Mendez I, Dagher A, Hong M, Hebb A, Gaudet P, Law A, et al. Enhancement of survival of stored dopaminergic cells and promotion of graft survival by exposure of human fetal nigral tissue to glial cell line-derived neurotrophic factor in patients with Parkinson’s disease. Report of two cases and technical considerations. J Neurosurg. 2000;92(5):863–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Tiago Martins Rodrigues, André Jerónimo-Santos, Tiago Fleming Outeiro, Ana Maria Sebastião and Maria José Diógenes do not have any financial interest in this manuscript nor any potential conflicts of interest are foreseen. This work was supported by a Fundação para a Ciência e a Tecnologia (FCT) project grant. André Jerónimo-Santos is supported by an FCT fellowship grant (SFRH/BD/62828/2009) and Tiago Fleming Outeiro is supported by the DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Diógenes.

Additional information

T. M. Rodriques and A. Jerónimo-Santos contributed equally to this article.

Box 1. Future perspectives for neurotrophic factor-based strategies

Box 1. Future perspectives for neurotrophic factor-based strategies

  • New animal models that more closely reproduce Parkinson’s disease (PD) neurodegenerative process are needed.

  • The development of strategies that enhance neurotrophic factor (NTF) intraparenchymal perfusion—namely through the modulation of NTF interaction with proteins of the extracellular matrix.

  • Clinical trials that would recruit PD patients in the initial stage of the disease (which requires the development of appropriate biomarkers).

  • Clinical trials increased in their duration, with extended cohorts and improved in their design (e.g. the delayed-start design) as to enhance their sensibility to detect effects.

  • Data from individual patients in trials should not be overlooked as it could provide new insights, given the reported inter-individual variability in therapeutic response.

  • The delivery methods must be optimized.

  • The new methods of delivery must be translated into clinical practice (e.g. microspheres and ex vivo gene therapy using encapsulated cells).

  • Uncharted hypothesis ought to be tested in clinical trials (e.g. combinations of synergistic NTFs and the addition of NTFs to current therapies).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, T.M., Jerónimo-Santos, A., Outeiro, T.F. et al. Challenges and Promises in the Development of Neurotrophic Factor-Based Therapies for Parkinson’s Disease. Drugs Aging 31, 239–261 (2014). https://doi.org/10.1007/s40266-014-0160-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40266-014-0160-x

Keywords

Navigation