Skip to main content
Log in

Central Nervous System Penetration of Antiretroviral Drugs: Pharmacokinetic, Pharmacodynamic and Pharmacogenomic Considerations

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The prevalence of HIV-associated neurocognitive disorder (HAND) is increasing despite the widespread use of combination antiretroviral therapy (ART). Initial reports suggest that the use of antiretrovirals with good central nervous system (CNS) penetration leads to better neurocognitive outcomes, but this has not yet been confirmed in a large cohort study or randomised controlled trial. There is emerging evidence that high CNS concentrations of some antiretrovirals are potentially neurotoxic and may be associated with the development of HAND. Antiretroviral CNS exposure is ideally determined by determining the ratio of cerebrospinal fluid (CSF):plasma area under the curve of unbound drug, but usually only total drug concentrations are measured and the ratio of CSF:plasma drug concentration is done at a single time point, which can result in misclassifying CNS penetration ability. Efavirenz was previously thought to have poor CNS penetration, measured by the CSF:plasma ratio (0.87 %), but when unbound concentrations were measured it was found to have good CNS penetration (85 %). Indinavir and efavirenz are the only antiretroviral drugs for which CNS area under the concentration–time curves using unbound plasma and CSF concentrations has been calculated. Patient data to support the contribution of blood–brain barrier transporter polymorphisms to CNS antiretroviral concentrations are currently limited and lack power to detect true associations. Correlations between CNS antiretroviral exposure and effect is multifaceted, and to accurately predict CNS effects there is a need to develop a sophisticated intra-brain pharmacokinetic–pharmacodynamic–pharmacogenetic model that includes transporters as well as the influence of HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heaton RK, Clifford DB, Franklin DR, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Sacktor N, Robertson K. Evolving clinical phenotypes in HIV-associated neurocognitive disorders. Curr Opin HIV AIDS. 2014;9(6):517–20.

    Article  CAS  PubMed  Google Scholar 

  3. Andrade AS, Deutsch R, A Celano S, et al. Relationships among neurocognitive status, medication adherence measured by pharmacy refill records, and virologic suppression in HIV-infected persons. J Acquir Immune Defic Syndr. 2013;62(3):282–92.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Letendre S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top Antivir Med. 2011;19(4):137–42.

    PubMed  Google Scholar 

  5. Tovar-y-Romo LB, Bumpus NN, Pomerantz D, et al. Dendritic spine injury induced by the 8-hydroxy metabolite of efavirenz. J Pharmacol Exp Ther. 2012;343(3):696–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neurovirol. 2012;18(5):388–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Caniglia EC, Cain LE, Justice A, et al. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. Neurology. 2014;83(2):134–41.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Letendre S, Marquie-Beck J, Capparelli E, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65(1):65–70.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. De Lange ECM, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet. 2002;41(10):691–703.

    Article  PubMed  Google Scholar 

  11. Enting RH, Hoetelmans RM, Lange JM, Burger DM, Beijnen JH, Portegies P. Antiretroviral drugs and the central nervous system. AIDS. 1998;12(15):1941–55.

    Article  CAS  PubMed  Google Scholar 

  12. Wynn HE, Brundage RC, Fletcher CV. Clinical implications of CNS penetration of antiretroviral drugs. CNS Drugs. 2002;16(9):595–609.

    Article  CAS  PubMed  Google Scholar 

  13. Haas DW, Stone J, Clough LA, et al. Steady-state pharmacokinetics of indinavir in cerebrospinal fluid and plasma among adults with human immunodeficiency virus type 1 infection. Clin Pharmacol Ther. 2000;68(4):367–74.

    Article  CAS  PubMed  Google Scholar 

  14. Avery LB, Sacktor N, McArthur JC, Hendrix CW. Protein-free efavirenz concentrations in cerebrospinal fluid and blood plasma are equivalent: applying the law of mass action to predict protein-free drug concentration. Antimicrob Agents Chemother. 2013;57(3):1409–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Boffito M, Back DJ, Blaschke TF, et al. Protein binding in antiretroviral therapies. AIDS Res Hum Retrovir. 2003;19(9):825–35.

    Article  CAS  PubMed  Google Scholar 

  16. Ronaldson PT, Persidsky Y, Bendayan R. Regulation of ABC membrane transporters in glial cells: relevance to the pharmacotherapy of brain HIV-1 infection. Glia. 2008;56(16):1711–35.

    Article  PubMed  Google Scholar 

  17. Varatharajan L, Thomas SA. The transport of anti-HIV drugs across blood-CNS interfaces: summary of current knowledge and recommendations for further research. Antivir Res. 2009;82(2):A99–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther. 2009;123(1):80–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6(8):591–602.

    Article  PubMed  Google Scholar 

  20. Groothuis DR, Levy RM. The entry of antiviral and antiretroviral drugs into the central nervous system. J Neurovirol. 1997;3:387–400.

    Article  CAS  PubMed  Google Scholar 

  21. Cropp CD, Yee SW, Giacomini KM. Genetic variation in drug transporters in ethnic populations. Clin Pharmacol Ther. 2008;84(3):412–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rodríguez-Nóvoa S, Barreiro P, Jiménez-Nácher I, Soriano V. Overview of the pharmacogenetics of HIV therapy. Pharmacogenomics J. 2006;6(4):234–45.

    PubMed  Google Scholar 

  23. Avison MJ, Nath A, Greene-Avison R, Schmitt FA, Greenberg RN, Berger JR. Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol. 2004;157(1–2):140–6.

    Article  CAS  PubMed  Google Scholar 

  24. Calcagno A, Di Perri G, Bonora S. Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet. 2014;53:891–906.

    Article  CAS  PubMed  Google Scholar 

  25. Calcagno A, Cusato J, Simiele M, et al. High interpatient variability of raltegravir CSF concentrations in HIV-positive patients: a pharmacogenetic analysis. J Antimicrob Chemother. 2014;69(1):241–5.

    Article  CAS  PubMed  Google Scholar 

  26. Calcagno A, Simiele M, Alberione MC, et al. Cerebrospinal fluid inhibitory quotients of antiretroviral drugs in HIV-infected patients are associated with compartmental viral control. Clin Infect Dis. 2014;60:311–7.

    Article  PubMed  Google Scholar 

  27. Letendre SL, Ellis RJ, Ances BM, McCutchan JA. Neurologic complications of HIV disease and their treatment. Top HIV Med. 2010;18(2):45–55.

    PubMed  Google Scholar 

  28. Marra CM, Zhao Y, Clifford DB, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23(11):1359–66.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cysique LA, Vaida F, Letendre S, et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology. 2009;73(5):342–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tozzi V, Balestra P, Salvatori MF, et al. Changes in cognition during antiretroviral therapy: comparison of 2 different ranking systems to measure antiretroviral drug efficacy on HIV-associated neurocognitive disorders. J Acquir Immune Defic Syndr. 2009;52(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  31. Giunta B, Ehrhart J, Obregon DF, et al. Antiretroviral medications disrupt microglial phagocytosis of β-amyloid and increase its production by neurons: implications for HIV-associated neurocognitive disorders. Mol Brain. 2011;4(1):23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ellis RJ, Letendre S, Vaida F, et al. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis. 2014;58(7):1015–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentré F, Taburet A-M. Intracellular pharmacokinetics of antiretroviral drugs in HIV-infected patients, and their correlation with drug Action. Clin Pharmacokinet. 2010;49(1):17–45.

    Article  CAS  PubMed  Google Scholar 

  34. Rolinski B, Bogner JR, Sadri I, Wintergerst U, Goebel FD. Absorption and elimination kinetics of zidovudine in the cerebrospinal fluid in HIV-1-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;15(3):192–7.

    Article  CAS  PubMed  Google Scholar 

  35. Fischl MA, Richman DD, Grieco MH, et al. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. N Engl J Med. 1987;317(4):185–91.

    Article  CAS  PubMed  Google Scholar 

  36. McDowell JA, Chittick GE, Ravitch JR, Polk RE, Kerkering TM, Stein DS. Pharmacokinetics of [14C]abacavir, a human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitor, administered in a single oral dose to HIV-1-infected adults: a mass balance study. Antimicrob Agents Chemother. 1999;43:2855–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  37. McDowell JA, Lou Y, Symonds WS, Stein DS. Multiple-dose pharmacokinetics and pharmacodynamics of abacavir alone and in combination with zidovudine in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother. 2000;44(8):2061–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Best BM, Letendre SL, Koopmans P, et al. Low cerebrospinal fluid concentrations of the nucleotide HIV reverse transcriptase inhibitor, tenofovir. J Acquir Immune Defic Syndr. 2012;59(4):376–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Yilmaz A, Watson V, Dickinson L, Back D. Efavirenz pharmacokinetics in cerebrospinal fluid and plasma over a 24-h dosing interval. Antimicrob Agents Chemother. 2012;56(9):4583–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Avery LB, VanAusdall JL, Hendrix CW, Bumpus NN. Compartmentalization and antiviral effect of efavirenz metabolites in blood plasma, seminal plasma, and cerebrospinal fluid. Drug Metab Dispos. 2013;41(2):422–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Di Iulio J, Fayet A, Arab-Alameddine M, et al. In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function. Pharmacogenet Genomics. 2009;19(4):300–9.

    Article  PubMed  Google Scholar 

  42. Kenedi CA, Goforth HW. A systematic review of the psychiatric side-effects of efavirenz. AIDS Behav. 2011;15(8):1803–18.

    Article  PubMed  Google Scholar 

  43. Decloedt EH, Maartens G. Neuronal toxicity of efavirenz: a systematic review. Expert Opin Drug Saf. 2013;12(6):841–6.

    Article  CAS  PubMed  Google Scholar 

  44. Winston A, Amin J, Clarke A, et al. Cerebrospinal fluid exposure of efavirenz and its major metabolites when dosed at 400 mg and 600 mg once daily: a randomized controlled trial. Clin Infect Dis. 2014. (Epub 11 Dec).

  45. Best BM, Koopmans PP, Letendre SL, et al. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV. J Antimicrob Chemother. 2011;66(2):354–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Cusini A, Vernazza PL, Yerly S, et al. Higher CNS penetration-effectiveness of long-term combination antiretroviral therapy is associated with better HIV-1 viral suppression in cerebrospinal fluid. J Acquir Immune Defic Syndr. 2013;62(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  47. Van Praag RME, van Weert ECM, van Heeswijk RPG, et al. Stable concentrations of zidovudine, stavudine, lamivudine, abacavir, and nevirapine in serum and cerebrospinal fluid during 2 years of therapy. Antimicrob Agents Chemother. 2002;46(3):896–9.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Saitoh A, Sarles E, Capparelli E, et al. CYP2B6 genetic variants are associated with nevirapine pharmacokinetics and clinical response in HIV-1-infected children. AIDS. 2007;21(16):2191–9.

    Article  CAS  PubMed  Google Scholar 

  49. Antinori A, Perno CF, Giancola ML, et al. Efficacy of cerebrospinal fluid (CSF)-penetrating antiretroviral drugs against HIV in the neurological compartment: different patterns of phenotypic resistance in CSF and plasma. Clin Infect Dis. 2005;41(12):1787–93.

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen A, Rossi S, Croteau D, et al. Etravirine in CSF is highly protein bound. J Antimicrob Chemother. 2013;68(5):1161–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Tiraboschi JM, Niubo J, Vila A, Perez-Pujol S, Podzamczer D. Etravirine concentrations in CSF in HIV-infected patients. J Antimicrob Chemother. 2012;67(6):1446–8.

    Article  CAS  PubMed  Google Scholar 

  52. Haas DW, Johnson B, Nicotera J, et al. Effects of ritonavir on indinavir pharmacokinetics in cerebrospinal fluid and plasma. Antimicrob Agents Chemother. 2003;47(7):2131–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Croteau D, Rossi SS, Best BM, et al. Darunavir is predominantly unbound to protein in cerebrospinal fluid and concentrations exceed the wild-type HIV-1 median 90 % inhibitory concentration. J Antimicrob Chemother. 2013;68(3):684–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. 2014 [Table 8, page 25]. http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 21 Oct 2014.

  55. Van Praag RM, Weverling GJ, Portegies P, et al. Enhanced penetration of indinavir in cerebrospinal fluid and semen after the addition of low-dose ritonavir. AIDS. 2000;14(9):1187–94.

    Article  PubMed  Google Scholar 

  56. Letendre SL, Capparelli EV, Ellis RJ, McCutchan JA. Indinavir population pharmacokinetics in plasma and cerebrospinal fluid. The HIV Neurobehavioral Research Center Group. Antimicrob Agents Chemother. 2000;44(8):2173–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Polis MA, Suzman DL, Yoder CP, et al. Suppression of cerebrospinal fluid HIV burden in antiretroviral naive patients on a potent four-drug antiretroviral regimen. AIDS. 2003;17(8):1167–72.

    Article  CAS  PubMed  Google Scholar 

  58. Kalvass JC, Polli JW, Bourdet DL, et al. Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther. 2013;94(1):80–94.

    Article  CAS  PubMed  Google Scholar 

  59. Best BM, Letendre SL, Brigid E, et al. Low atazanavir concentrations in cerebrospinal fluid. AIDS. 2009;23(1):83–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Lafeuillade A, Solas C, Halfon P, Chadapaud S, Hittinger G, Lacarelle B. Differences in the detection of three HIV-1 protease inhibitors in non-blood compartments: clinical correlations. HIV Clin Trials. 2002;3(1):27–35.

    Article  PubMed  Google Scholar 

  61. Solas C, Lafeuillade A, Halfon P, Chadapaud S, Hittinger G, Lacarelle B. Discrepancies between protease inhibitor concentrations and viral load in reservoirs and sanctuary sites in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 2003;47(1):238–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Aweeka F, Jayewardene A, Staprans S, et al. Failure to detect nelfinavir in the cerebrospinal fluid of HIV-1–infected patients with and without AIDS dementia complex. J Acquir Immune Defic Syndr Hum Retrovirol. 1999;20(1):39–43.

    Article  CAS  PubMed  Google Scholar 

  63. Yilmaz A, Fuchs D, Hagberg L, et al. Cerebrospinal fluid HIV-1 RNA, intrathecal immunoactivation, and drug concentrations after treatment with a combination of saquinavir, nelfinavir, and two nucleoside analogues: the M61022 study. BMC Infect Dis. 2006;6:63.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Karlström O, Ståhle L, Perrin L, Tegude H, Sönnerborg A. Efficacy of nelfinavir-based treatment in the central nervous system of HIV-1 infected patients. Scand J Infect Dis. 2006;38(5):371–4.

    Article  PubMed  Google Scholar 

  65. Capparelli EV, Holland D, Okamoto C, et al. Lopinavir concentrations in cerebrospinal fluid exceed the 50 % inhibitory concentration for HIV. AIDS. 2005;19(9):949–52.

    Article  CAS  PubMed  Google Scholar 

  66. DiCenzo R, DiFrancesco R, Cruttenden K, Donnelly J, Schifitto G. Lopinavir cerebrospinal fluid steady-state trough concentrations in HIV-infected adults. Ann Pharmacother. 2009;43(12):1972–7.

    Article  CAS  PubMed  Google Scholar 

  67. Yilmaz A, Izadkhashti A, Price RW, et al. Darunavir concentrations in cerebrospinal fluid and blood in HIV-1-infected individuals. AIDS Res Hum Retrovir. 2009;25(4):457–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Calcagno A, Yilmaz A, Cusato J, et al. Determinants of darunavir cerebrospinal fluid concentrations: impact of once-daily dosing and pharmacogenetics. AIDS. 2012;26(12):1529–33.

    Article  CAS  PubMed  Google Scholar 

  69. Khaliq Y, Gallicano K, Venance S, Kravcik S, Cameron DW. Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus. Clin Pharmacol Ther. 2000;68(6):637–46.

    Article  CAS  PubMed  Google Scholar 

  70. Moyle GJ, Sadler M, Buss N. Plasma and cerebrospinal fluid saquinavir concentrations in patients receiving combination antiretroviral therapy. Clin Infect Dis. 1999;28:403–4.

    Article  CAS  PubMed  Google Scholar 

  71. Kravcik S, Gallicano K, Roth V, et al. Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. J Acquir Immune Defic Syndr. 1999;21(5):371–5.

    Article  CAS  PubMed  Google Scholar 

  72. Price RW, Parham R, Kroll JL, et al. Enfuvirtide cerebrospinal fluid (CSF) pharmacokinetics and potential use in defining CSF HIV-1 origin. Antivir Ther. 2008;13(3):369–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Yilmaz A, Watson V, Else L, Gisslèn M. Cerebrospinal fluid maraviroc concentrations in HIV-1 infected patients. AIDS. 2009;23(18):2537–40.

    Article  CAS  PubMed  Google Scholar 

  74. Yilmaz A, Gisslén M, Spudich S, et al. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection. PLoS One. 2009;4(9):e6877.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Johnson DH, Sutherland D, Acosta EP, Erdem H, Richardson D, Haas DW. Genetic and non-genetic determinants of raltegravir penetration into cerebrospinal fluid: a single arm pharmacokinetic study. PLoS One. 2013;8(12):5156–60.

    Google Scholar 

  76. Eilers M, Roy U, Mondal D. MRP (ABCC) transporters-mediated efflux of anti-HIV drugs, saquinavir and zidovudine, from human endothelial cells. Exp Biol Med (Maywood). 2008;233(9):1149–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Cordon-Cardo C, O’Brien JP, Casals D, et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci. 1989;86(2):695–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kusuhara H, Sugiyama Y. Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx. 2005;2(1):73–85.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kim RB. Drug transporters in HIV therapy. Top HIV Med. 2003;11(4):136–9.

    PubMed  Google Scholar 

  80. Johnson DH, Sutherland D, Acosta EP, Erdem H, Richardson D, Haas DW. Genetic and non-genetic determinants of raltegravir penetration into cerebrospinal fluid: a single arm pharmacokinetic study. PLoS One. 2013;8(12):e82672.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Haas DW, Clough LA, Johnson BW, et al. Evidence of a source of HIV type 1 within the central nervous system by ultraintensive sampling of cerebrospinal fluid and plasma. AIDS Res Hum Retrovir. 2000;16(15):1491–502.

    Article  CAS  PubMed  Google Scholar 

  82. Yasuda SU, Zhang L, Huang SM. The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies. Clin Pharmacol Ther. 2008;84(3):417–23.

    Article  CAS  PubMed  Google Scholar 

  83. Capparelli EV, Letendre SL, Ellis RJ, Patel P, Holland D, Mccutchan JA. Population pharmacokinetics of abacavir in plasma and cerebrospinal fluid. Antimicrob Agents Chemother. 2005;49(6):2504–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Van Leeuwen R, Katlama C, Kitchen V, et al. Evaluation of safety and efficacy of 3TC (lamivudine) in patients with asymptomatic or mildly symptomatic human immunodeficiency virus infection: a phase I/II study. J Infect Dis. 1995;171(5):1166–71.

    Article  PubMed  Google Scholar 

  85. Mueller BU, Lewis LL, Yuen GJ, et al. Serum and cerebrospinal fluid pharmacokinetics of intravenous and oral lamivudine in human immunodeficiency virus-infected children. Antimicrob Agents Chemother. 1998;42(12):3187–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Foudraine NA, Hoetelmans RM, Lange JM, et al. Cerebrospinal-fluid HIV-1 RNA and drug concentrations after treatment with lamivudine plus zidovudine or stavudine. Lancet. 1998;351(9115):1547–51.

    Article  CAS  PubMed  Google Scholar 

  87. Haworth SJ, Christofalo B, Anderson RD, Dunkle LM. A single-dose study to assess the penetration of stavudine into human cerebrospinal fluid in adults. J Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(3):235–8.

    Article  CAS  PubMed  Google Scholar 

  88. Hoetelmans RM, Kraaijeveld CL, Meenhorst PL, et al. Penetration of 3′-amino-3′-deoxythymidine, a cytotoxic metabolite of zidovudine, into the cerebrospinal fluid of HIV-1-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;15(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  89. Martin C, Sönnerborg A, Svensson JO, Ståhle L. Indinavir-based treatment of HIV-1 infected patients: efficacy in the central nervous system. AIDS. 1999;13(10):1227–32.

    Article  CAS  PubMed  Google Scholar 

  90. Zhou XJ, Havlir DV, Richman DD, et al. Plasma population pharmacokinetics and penetration into cerebrospinal fluid of indinavir in combination with zidovudine and lamivudine in HIV-1-infected patients. AIDS. 2000;14(18):2869–76.

    Article  CAS  PubMed  Google Scholar 

  91. Vernazza P, Daneel S, Schiffer V, et al. The role of compartment penetration in PI-monotherapy: the Atazanavir-Ritonavir Monomaintenance (ATARITMO) Trial. AIDS. 2007;21(10):1309–15.

    Article  CAS  PubMed  Google Scholar 

  92. Croteau D, Letendre S, Best BM, et al. Total raltegravir concentrations in cerebrospinal fluid exceed the 50-percent inhibitory concentration for wild-type HIV-1. Antimicrob Agents Chemother. 2010;54(12):5156–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Eric Decloedt, Bernd Rosenkranz, Gary Maartens and John Joska have no conflicts of interest to declare and no funding was received to prepare this manuscript. Eric Decloedt and John Joska received self-initiated research funding from the European and Developing Countries Clinical Trials Partnership (EDCTP Grant number SP.2011.41304.065) and the South African Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric H. Decloedt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decloedt, E.H., Rosenkranz, B., Maartens, G. et al. Central Nervous System Penetration of Antiretroviral Drugs: Pharmacokinetic, Pharmacodynamic and Pharmacogenomic Considerations. Clin Pharmacokinet 54, 581–598 (2015). https://doi.org/10.1007/s40262-015-0257-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0257-3

Keywords

Navigation