Skip to main content
Log in

Landfarmed oil sludge as a carbon source for Canavalia ensiformis during phytoremediation

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Petroleum exploitation in oilfields, especially drilling, generates an oily sludge mixed with hydrocarbons and mineral solids. This oily sludge is sometimes treated by bioremediation and phytoremediation. This investigation established that landfarmed oil sludge provided adequate soil conditions to grow jack beans (Canavalia ensiformis) that in turn rhizo- and phytoremediated residual aliphatic and aromatic hydrocarbons in the soil. Landfarming oily sludge adequately reduced jack bean phytotoxicity. Rhizo- and phytodegradation reduced total petroleum hydrocarbons by 57.38 % during 4 months of growing jack beans. Aliphatic hydrocarbons were detected in the roots but not in the aerial parts. Polycyclic aromatic hydrocarbons were translocated to the roots, stems, leaves, and beans, requiring successive cropping to manage all risks associated with some aromatic hydrocarbons found such as: acenaphthylene, anthracene, pyrene, benzo(a)anthracene, benzo(k)fluoranthene, and benzo(a)pyrene. Landfarming and phytoremediation, perhaps with successive crops, holds the promise of providing inexpensive management of extensive oily wastes when sufficient land is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79(3):273–276

    Article  CAS  Google Scholar 

  • Allard AS, Neilson AH (1997) Bioremediation of organic waste sites: a critical review of microbiological aspects. Int Biodeterior Biodegrad 39(4):253–285

    Article  CAS  Google Scholar 

  • Andrade SAL, Jorge RA, Silveira APD (2005) Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi. Sci Agric 62(4):389–394

    Article  Google Scholar 

  • Barbosa CE (1984) Manual de Técnicas para Colecciones Botánicas. Instituto Nacional de los Recursos Naturales Renovables y del Ambiente (INDERENA), Bogotá, Colombia, pp 4–6

    Google Scholar 

  • Canini A, Alesiani D, D’Arcangelo G, Tagliatesta P (2007) Gas chromatography–mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J Food Compos Anal 20(7):584–590

    CAS  Google Scholar 

  • Carman EP, Crossman TL, Gatliff EG (1998) Phytoremediation of No. 2 fuel oil-contaminated soil. J Soil Contam 7(4):455–466

    Article  CAS  Google Scholar 

  • Cofield N, Schwab AP, Banks MK (2007) Phytoremediation of polycyclic aromatic hydrocarbons in soil: part I, dissipation of target contaminants. Int J Phytorem 9(5):355–370

    Article  CAS  Google Scholar 

  • Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37(4):729–739

    CAS  Google Scholar 

  • Gudin C, Syratt WJ (1975) Biological aspects of land rehabilitation following hydrocarbon contamination. Environ Pollut 8(2):107–112

    Article  Google Scholar 

  • Guillén MD, Manzanos MJ (1998) Study of the composition of the different parts of a Spanish Thymus vulgaris L. plant. Food Chem 63(3):373–383

    Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15

    Article  CAS  Google Scholar 

  • Harms H, Bokern M, Kolb M, Bock C (2003) Transformation of organic contaminants by different plant systems. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley Interscience, USA

    Google Scholar 

  • Hodges SC (2010) Soil fertility basics [Internet]. NC Certified Crop Advising Training, North Carolina, USA. Soil science extension [cited 2010 March 2]. http://www.plantstress.com/Articles/min_deficiency_i/soil_fertility.pdf

  • Huheey JE (1972) Inorganic chemistry. In: McBride MB (ed) Environmental chemistry of soils. Harper and Row, New York

    Google Scholar 

  • Hutchinson SL, Schwab AP, Banks MK (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley Interscience, USA

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. In: McBride MB (ed) Environmental chemistry of soils, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kelling KA (1999) A2522 understanding plant nutrients: soil and applied boron [Internet]. University of Winsconsin, USA [cited 2010 March 2]. http://www.soils.wisc.edu/extension/pubs/A2522.pdf

  • Kuyukina MS, Ivshina IB, Ritchkova MI, Philp JC, Cunningham CJ, Christofi N (2003) Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil Sediment Contam 12(1):85–99

    Article  CAS  Google Scholar 

  • Lee RF (2003) Photo-oxidation and photo-toxicity of crude and refined oils. Spill Sci Technol Bull 8(2):157–162

    Article  CAS  Google Scholar 

  • Maila MP, Cloete TE (2004) Bioremediation of petroleum hydrocarbons through landfarming: are simplicity and cost-effectiveness the only advantages? Rev Environ Sci Biotechnol 3(4):349–360

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley Interscience, USA

    Book  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    Article  CAS  Google Scholar 

  • Muratova AY, Dmitrieva TV, Panchenko LV, Turkovskaya OV (2008) Phytoremediation of oil-sludge-contaminated soil. Int J Phytorem 10(6):486–502

    Article  CAS  Google Scholar 

  • Oh CH, Kim JH, Kim KR, Mabry TJ (1995) Rapid gas chromatographic screening of edible seeds, nuts beans for non-protein and protein amino acids. J Chromatogr A 708(1):131–141

    Article  CAS  Google Scholar 

  • Olson PE, Fletcher JS (2000) Ecological recovery of vegetation at a former industrial sludge basin and its implication to phytoremediation. Environ Sci Pollut Res 7(4):195–204

    Article  CAS  Google Scholar 

  • Olson PE, Reardon KF, Pilon-Smits EAH (2003) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley Interscience, USA

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540

    Article  CAS  Google Scholar 

  • Radwan SS, Dashti N, El-Nemr I, Khanafer M (2007) Hydrocarbon utilization by nodule bacteria and plant growth-promoting rhizobacteria. Int J Phytorem 9(6):475–486

    Article  CAS  Google Scholar 

  • Rasband WS (1997–2011) ImageJ [Internet]. U. S. National Institutes of Health, Bethesda, Maryland, USA [updated 2011 June 24; cited 2010 Feb 15]. http://rsb.info.nih.gov/ij/

  • Ruther J (2000) Retention index database for identification of general green leaf volatiles in plants by coupled capillary gas chromatography–mass spectrometry. J Chromatogr A 890(2):313–319

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):318A–323A

    Article  CAS  Google Scholar 

  • Schwab AP, Su J, Wetzel S, Pekarek S, Banks MK (1999) Extraction of petroleum hydrocarbons from soil by mechanical shaking. Environ Sci Technol 33(11):1940–1945

    Article  CAS  Google Scholar 

  • Singh RP, Dhania G, Sharma A, Jaiwal PK (2007) Biotechnological approaches to improve phytoremediation efficiency for environment contaminants. In: Singh SN, Tripathi RD (eds) Environmental bioremediation techniques. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Thoma GJ, Lam TB, Wolf DC (2003) A mathematical model of phytoremediation for petroleum contaminated soil: model development. Int J Phytorem 5(1):41–55

    Article  CAS  Google Scholar 

  • U. S. Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) (1999) Soil quality test kit guide. Section 1. Test procedures, and Section 2. Background and interpretive guide for individual tests [Internet]. Soil Quality Institute, Ames, Iowa [cited 2010 March 2]. http://soils.usda.gov/sqi/assessment/files/test_kit_complete.pdf

  • Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge-contaminated soil. Environ Int 26(5–6):409–411

    Article  CAS  Google Scholar 

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Research Fund of the Faculty of Sciences of the Universidad de Los Andes (Funding Call 2009-2 for postgraduate research projects) and the “Centro de Investigaciones Microbiológicas” (CIMIC). We wish to thank Vladimir Ramírez (Biointech) for providing the landfarmed oil sludge and Oscar Ariza for his support in the analysis of chromatograms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ramirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, D., Dussan, J. Landfarmed oil sludge as a carbon source for Canavalia ensiformis during phytoremediation. Int. J. Environ. Sci. Technol. 11, 1197–1206 (2014). https://doi.org/10.1007/s13762-014-0575-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0575-2

Keywords

Navigation