Skip to main content
Log in

Effects of silver nanoparticles on thermal properties of DBSA-doped polyaniline/PVC blends

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PAND) has been synthesized by redoping (PANDR) and aqueous polymerization (PANDA) methods. Silver nanoparticles were incorporated into the PANDR/tetrahydrofuran solution (PANDS) and then mixed with poly (vinyl chloride) (PVC) solution to prepare PANDS/PVC nanocomposites. In the present study, effects of silver nanoparticles on thermal properties of PAND/PVC blends have been investigated by employing thermal gravimetric analysis and heat flow microcalorimetry techniques. From these results it has been observed that the thermal stability of blends have increased by increasing the concentration of PAND in blends and nanocomposites. Addition of silver nanoparticles has suppressed the dehydrochlorination process and evolution/degradation of DBSA in PANDS/PVC nanocomposites. Presence of silver nanoparticles in PAND/PVC nanocomposites has reduced the mobility of PANI chains which in turn inhibited the transfer of free radicals formed during degradation of PAND and PVC through inter-chain reactions; hence, degradation process has been slowed down and thermal stability has been improved. Embedment of silver nanoparticles has reduced thermal weight loss corresponding to polymer degradation step and attains lower heat flow level in inert atmosphere for nanocomposites in contrast to those with no nanoparticles, thereby further improving thermal stability of nanocomposites. The heats of oxidation measured for blends and nanocomposites were independent of PAND/PVC blends composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pielichowski K (1998) Thermal degradation of poly (vinylchloride)/polyaniline conducting blends. J Therm Anal Calorim 54:171–175

    Article  CAS  Google Scholar 

  2. Anand J, Palaniappan S, Sathyanarayana DN (1998) Conducting polyaniline blends and composites. Prog Polym Sci 23:993–1018

    Article  CAS  Google Scholar 

  3. Thangarathinavelu M, Tripathi AK, Goel TC, Varma IK (1994) Preparation and characterization of polyaniline-PVC polymer composite film. J Appl Polym Sci 51:1347–1349

    Article  CAS  Google Scholar 

  4. Andreatta A, Heager AJ, Smith P (1990) Electrically conductive polyblend fibres of polyaniline and poly-(p-phenylene terephthalamide). Polym Commun 31:275–278

    CAS  Google Scholar 

  5. Cao Y, Smith P, Heeger AJ (1992) Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth Met 48:91–97

    Article  CAS  Google Scholar 

  6. Cao Y, Smith P (1993) Liquid-crystalline solutions of electrically conducting polyaniline. Polymer 34:3139–3143

    Article  CAS  Google Scholar 

  7. Zhang L, Long Y, Chen Z (2004) The effect of hydrogen bonding on self-assembled polyaniline nanostructures. Adv Funct Mater 14:693–698

    Article  CAS  Google Scholar 

  8. Yoon CO, Reghu M, Moses D, Heeger A (1994) Electrical transport in conductive blends of polyaniline in poly (methyl methacrylate). Synth Met 63:47–52

    Article  CAS  Google Scholar 

  9. Zareh EN, Moghadam PN, Azariyan E, Sharifian I (2011) Conductive and biodegradable polyaniline/starch blends and their composites with polystyrene. Iran Polym J 20:319–328

    CAS  Google Scholar 

  10. Kafshgari MH, Khorram M, Mansouri M, Samimi A, Osfouri S (2012) Preparation of alginate and chitosan nanoparticles using a new reverse micellar system. Iran Polym J 21:99–107

    Article  Google Scholar 

  11. Amirian M, Chakoli AN, Cai W, Sui JH (2012) In vitro degradation of poly(L-lactide)/poly(ε-caprolactone) blend reinforced with MWCNTs. Iran Polym J 21:165–174

    Article  Google Scholar 

  12. He T, Ma Y, Cao Y, Yang W, Yao J (2001) Enhanced electrochromism of WO3 thin film by gold nanoparticles. J Electro Anal Chem 514:129–132

    Article  CAS  Google Scholar 

  13. Leroux YR, Lacroix JC, Ching KIC, Fave C, F′elidj N, Levi G, Aubard J, Krenn JR, Hohenau A (2005) Conducting polymer electrochemical switching as an easy means for designing active plasmonic devices. J Am Chem Soc 127:16022–16023

    Article  CAS  Google Scholar 

  14. Namboothiry MAG, Zimmerman T, Coldren FM, Liu J, Kim K, Carroll DL (2007) Electrochromic properties of conducting polymer metal nanoparticles composites. Synth Met 157:580–584

    Article  CAS  Google Scholar 

  15. Xu GC, Shi JJ, Li DJ, Xing HL (2009) On interaction between nano-Ag and P(AMPS-co-MMA) copolymer synthesized by ultrasonic. J Polym Res 16:295–299

    Article  CAS  Google Scholar 

  16. Afzal AB, Akhtar MJ, Nadeem M, Hassan MM (2010) Dielectric and impedance studies of DBSA doped polyaniline/PVC composites. Curr Appl Phys 10:601–606

    Article  Google Scholar 

  17. Afzal AB, Akhtar MJ, Svensson LG (2010) Thermal studies of DBSA-doped polyaniline/PVC blends by isothermal microcalorimetry. J Therm Anal Calorim 100:1017–1025

    Article  CAS  Google Scholar 

  18. Afzal AB, Akhtar MJ (2010) Effect of inorganic silver nanoparticles on structural and electrical properties of polyaniline/PVC blends. J Inorg Organomet Polym 20:783–792

    Article  CAS  Google Scholar 

  19. Afzal AB, Akhtar MJ, Ahmad M (2010) Morphological studies of DBSA-doped polyaniline/PVC blends. J Electron Microsc 59:339–344

    Article  CAS  Google Scholar 

  20. Chen CH (2002) Thermal studies of polyaniline doped with dodecylbenzene sulfonic acid directly prepared via aqueous dispersions. J Polym Res 9:195–200

    Article  CAS  Google Scholar 

  21. Stevens MP (1999) Polymer chemistry: an introduction. Oxford University Press, New York

    Google Scholar 

  22. Kim S, Chung IJ (1998) Annealing effect on the electrochemical property of polyaniline complexed with various acids. Synth Met 97:127–133

    Article  CAS  Google Scholar 

  23. Srivastava A, Singh V, Chandra A, Witte K, Scherer UW, Singh TV (2006) Electrical conductivity studies of swift heavy ion modified PVC and PVC-PANI composite. Nucl Instrum Meth B 245:277–280

    Article  CAS  Google Scholar 

  24. de Farias RF, Nunes LM (2002) Thermogravimetric study about PVC-polyaniline blends. J Therm Anal Calorim 70:559–564

    Article  Google Scholar 

  25. Khanna PK, Singh N, Charan S, Viswanath AK (2005) Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Mater Chem Phys 92:214–219

    Article  CAS  Google Scholar 

  26. Mbhele ZH, Salemane MG, Van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024

    Article  CAS  Google Scholar 

  27. Pielichowski K, Janowski B (2005) Semi-interpenetrating polymer networks of polyurethane and poly (vinyl chloride). J Therm Anal Calorim 80:147–151

    Article  CAS  Google Scholar 

  28. Rannou P, Nechtschein M, Travers JP, Berner D, Wolter A, Djurado D (1999) Ageing of PANI: chemical, structural and transport consequences. Synth Met 101:734–737

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Higher Education Commission (HEC) of Pakistan for the financial support through indigenous scholarship scheme for Ph. D. studies of Asma Binat Afzal in science and technology (Batch II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Javed Akhtar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, A.B., Javed Akhtar, M. Effects of silver nanoparticles on thermal properties of DBSA-doped polyaniline/PVC blends. Iran Polym J 21, 489–496 (2012). https://doi.org/10.1007/s13726-012-0053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-012-0053-y

Keywords

Navigation