Skip to main content
Log in

Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Purpose

Epileptic seizure is generated by abnormal synchronization of neurons of the cerebral cortex of the patients, which is commonly detected by electroencephalograph (EEG) signals. In this paper, the intracranial EEG signals have been used to detect focal temporal lobe epilepsy.

Methods

This paper presents a new method based on empirical mode decomposition (EMD) of EEG signals for detection of epileptic seizures. The proposed method uses the Hilbert transformation of intrinsic mode functions (IMFs), obtained by EMD process that provides analytic signal representation of IMFs. The instantaneous area measured from the trace of the windowed analytic IMFs of EEG signals provides rules-based detection of focal temporal lobe epilepsy.

Results

The experiment results on intracranial EEG signals are included to show the effectiveness of the proposed method for detection of focal temporal lobe epilepsy. The performance evaluation of the proposed method for epileptic seizure detection has performed by computing the sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV) and error rate detection (ERD).

Conclusions

The proposed method has been compared to the existing methods for detecting focal temporal lobe epilepsy from intracranial EEG signals. The proposed method has provided detection of focal temporal lobe epilepsy with increased accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mormann F, Andrzejak RG, Elger CE, Lehnertz K. Seizure prediction: the long and winding road. Brain. 2007; 130:314–333.

    Article  Google Scholar 

  2. Li Z, Silva AM, Cunha JP. Movement quantification in epileptic seizures: a new approach to video-EEG analysis. IEEE T Bio-Med Eng. 2002; 49(6):565–573.

    Article  Google Scholar 

  3. Casson A, Yates D, Smith S, Duncan J, Rodriguez-Villegas E. Wearable electroencephalography. What is it, why is it needed, and what does it entail? IEEE Eng Med Biol. 2010; 29(3):44–56.

    Article  Google Scholar 

  4. Waterhouse E. New horizons in ambulatory electroencephalography. IEEE Eng Med Bio Mag. 2003; 22(3):74–80.

    Article  Google Scholar 

  5. Cuppens K, Lagae L, Ceulemans B, Huffel SV, Vanrumste B. Detection of nocturnal frontal lobe seizures in pediatric patients by means of accelerometers: a first study. Conf Proc IEEE Eng Med Biol Soc. 2009; 6608–6611. DOI:10.1109/IEMBS.2009.5332557.

    Google Scholar 

  6. Cuppens K, Chen CW, Tuytelaars T, Vel AV, Lagae L, Huffel SV. Integrating video and accelerometer signals for nocturnal epileptic seizure detection. Proc Int Conf ACM Multimodal Interact. 2012; 161–164.

    Chapter  Google Scholar 

  7. Tzallas AT, Tsipouras MG, Tsalikakis DG, Karvounis EC, Astrakas L, Konisiotis S, Tzaphlidou M. Automated epileptic seizure detection methods: a review study. Epilepsy — Histological, Electroencephalographic and Psychological Aspects. Dejan Stevanovic (Ed.). InTech. 2012.

    Google Scholar 

  8. Stacey WC, Litt B. Technology insight: neuroengineering and epilepsy-designing devices for seizure control. Nat Clin Pract Neurol. 2008; 4:190–201.

    Google Scholar 

  9. Ocak H. Optimal classification of epileptic seizures in EEG using wavelet analysis and genetic algorithm. Signal Process. 2008; 88:1858–1867.

    Article  MATH  Google Scholar 

  10. Dastidar SG, Adeli H, Dadmehr N. Mixed-band wavelet-chaosneural network methodology for epilepsy and epileptic seizure detection. IEEE T Bio-Med Eng. 2007; 54(9):1545–1551.

    Article  Google Scholar 

  11. Khan YU, Gotman J. Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol. 2003; 114:898–908.

    Article  Google Scholar 

  12. Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Process. 2012; DOI:10.1007/s11760-012-0362-9

    Google Scholar 

  13. Guo L, Rivero D, Pazos A. Epileptic seizure detection using multiwavelet transform based approximate entropy and artificial neural networks. J Neurosci Meth. 2010; 193:156–163.

    Article  Google Scholar 

  14. Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci. 2007. Article ID 80510, 2007.

    Google Scholar 

  15. Tzallas AT, Tsipouras MG, Fotiadis DI. Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans Inf Technol Biomed. 2009; 13(5):703–710.

    Article  Google Scholar 

  16. Güler NF, Übeyli ED, Güler İ. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl. 2005; 29(3):506–514.

    Article  Google Scholar 

  17. Accardo A, Affinito M, Carrozzi M, Bouquet F. Use of the fractal dimension for the analysis of electroencephalographic time series. Biol Cybern. 1997; 77:339–350.

    Article  MATH  Google Scholar 

  18. Lehnertz K, Elger CE. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroen Clin Neuro. 1995; 95(2):108–117.

    Article  Google Scholar 

  19. Kannathal N, Choo ML, Acharya UR, Sadasivan PK. Entropies for detection of epilepsy in EEG. Comput Meth Progr Bio. 2005; 80:187–194.

    Article  Google Scholar 

  20. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A. 1988; 454:903–995.

    MathSciNet  Google Scholar 

  21. Pachori RB. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res Lett Signal Process. 2008; Article ID 293056.

  22. Pachori RB, Bajaj V. Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput Meth Progr Bio. 2011; 104(3):373–381.

    Article  Google Scholar 

  23. Bajaj V, Pachori RB. Classification of seizure and nonseizure EEG Signals using empirical mode decomposition. IEEE Trans Inf Technol Biomed. 2012; 16(6):1135–1142.

    Article  Google Scholar 

  24. Orosco L, Laciar E, Correa AG, Torres A, Graffigna JP. An epileptic seizures detection algorithm based on the empirical mode decomposition of EEG. Conf Proc IEEE Eng Med Biol Soc. 2009; 2651–2654. DOI:10.1109/IEMBS.2009.5332861.

    Google Scholar 

  25. Correa AG, Laciar E, Orosco L, Gomez ME, Otoya R, Jane R. An energy-based detection algorithm of epileptic seizure in EEG records. Conf Proc IEEE Eng Med Biol Soc. 2009; 1384-7. DOI:10.1109/IEMBS.2009.5334114.

  26. Freiburg EEG Database Available: http://epilepsyuni-freiburg.de/freiburg-seizure-prediction-project/eeg-database.

  27. Maiwald T, Winterhalder M, Aschenbrenner-Scheibe R, Voss HU, Schulze-Bonhage A, Timmer J. Comparison of three nonlinear seizure prediction mathods by means of the seizure prediction characteristic. Physica D. 2004; 194:357–368.

    Article  MATH  Google Scholar 

  28. Lai YC, Ye N. Recent developments in chaotic time series analysis. Int J Bifurcat Chaos. 2003; 13(6):1383–1422.

    Article  MathSciNet  MATH  Google Scholar 

  29. Amoud H, Snoussi H, Hewson DJ, Duchêne J. Hilbert-Huang transformation: Application to postural stability analysis. Conf Proc IEEE Eng Med Biol Soc. 2007; 1562-5.

  30. Altman DG. Some common problems in medical research, in practical statistics for medical research. Chapman and Hall, UK. 1993; 396–439.

    Google Scholar 

  31. Ahirwal MK, Kumar A, Singh GK. Analysis and testing of PSO variants through application in EEG/ERP adaptive filtering approach. Biomed Eng Lett. 2012; 2(3):186–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilas Pachori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajaj, V., Pachori, R.B. Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed. Eng. Lett. 3, 17–21 (2013). https://doi.org/10.1007/s13534-013-0084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0084-0

Keywords

Navigation