Skip to main content
Log in

Newton process and semigroups of irreducible quasi-ordinary power series

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

The Newton process were introduced by Artal-Bartolo, Cassou-Noguès, Luengo and Melle-Hernández as a generalization of the Newton algorithm associated to plane curve singularities. Newton process is useful to study \(\nu \)-quasi-ordinary and quasi-ordinary polynomials in any number of variables. We describe numerically the Newton process associated to a quasi-ordinary branch of an irreducible quasi-ordinary polynomial in terms of its characteristic exponents. We show the relation between these numerical data and the semigroup of the singularity, give a criterium for irreducibility of quasi-ordinary polynomials and describe the normalization of irreducible quasi-ordinary surfaces in terms of the numerical data. We also study why and when irreducibility fails to be preserved by the Newton process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhyankar, S.: On the ramification of algebraic functions. Am. J. Math. 77, 575–592 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso, M.E., Luengo, I., Raimondo, M.: An algorithm on quasi-ordinary polynomials. Applied algebra, algebraic algorithms and error-correcting codes (Rome, 1988), pp. 59–73. In: Lecture Notes in Comput. Sci., vol. 357. Springer, Berlin (1989)

  3. Artal Bartolo, E., Cassou-Noguès, P., Luengo, I., Melle Hernández, A.: Quasi-ordinary power series and their zeta functions. Mem. Am. Math. Soc. 178, 841 (2005)

  4. Artal Bartolo, E., Cassou-Noguès, P., Luengo, I., Melle Hernández, A.: On \(\nu \)-quasi-ordinary power series: factorisation, Newton trees and resultants. Contemp. Math. 538, 321–344 (2011)

  5. Artal Bartolo, E., Cassou-Noguès, P., Luengo, I., Melle Hernández, A.: Quasi-ordinary singularities and Newton trees. Moscow Math. J. 13(3), 365–398 (2013)

  6. Assi, A.: Irreducible criteria for quasi-ordinary polynomials. J. Singul. 4, 23–34 (2012)

    Article  MathSciNet  Google Scholar 

  7. Brieskorn, E., Knörrer, H.: Plane algebraic curves. Translated from the German by John Stillwell. Birkhuser Verlag, Basel (1986)

    Book  Google Scholar 

  8. Casas-Alvero, E.: Singularities of plane curves. London Mathematical Society Lecture Note Series, vol. 276. Cambridge University Press, Cambridge (2000)

  9. Cassou-Noguès, P.: Newton trees at infinity of algebraic curves. Affine algebraic geometry, vol. 119. CRM Proc. Lecture Notes, vol. 54. Amer. Math. Soc., Providence (2011)

  10. Cassou-Noguès, P., Veys, W.: Newton trees for ideals in two variables and applications. Proc. London. Math. Soc. arXiv:1201.0467v1, 2 Jan (2012, to appear)

  11. Cassou-Noguès, P., Libgober, A.: Multivariable Hodge theoretical invariants of germs of plane curves II (2012, Preprint)

  12. Eisenbud, D., Neumann, W.: Three-dimensional link theory and invariants of plane curve singularities. In: Annals of Mathematics Studies, vol. 110. Princeton University Press, Princeton (1985)

  13. Gau, Y.N.: Embedded topological classification of quasi-ordinary singularities. Mem. Am. Math. Soc. 74(388), 109–129 (1988) (With an appendix by Joseph Lipman)

    Google Scholar 

  14. Goldin, R., Teissier, B.: Resolving singularities of plane analytic branches with one toric morphism. Resolution of singularities (Obergurgl, 1997), 315340. In: Progr. Math., vol. 181. Birkhuser, Basel (2000)

  15. García Barroso, E., González Pérez, P.D.: Decomposition in bunches of the critical locus of a quasi-ordinary map. Compos. Math. 141, 461–486 (2005)

  16. González Pérez, P.D.: Singularités quasi-ordinaires toriques et polyèdre de Newton du discriminant. Can. J. Math. 52(2), 348368 (2000)

  17. González Pérez, P.D.: Toric embedded resolutions of quasi-ordinary hypersurface singularities. Ann. Inst. Fourier (Grenoble) 53(6), 1819–1881 (2003)

  18. González Pérez, P.D.: The semigroup of a quasi-ordinary hypersurface. J. Inst. Math. Jussieu 2(3), 383–399 (2003)

  19. González Pérez, P.D., González Villa, M.: Motivic Milnor fibre of a quasi-ordinary hypersurface. Journal für die reine und angewandte Mathematik (Crelle)–Published online on May 23 (2012, to appear). doi:10.1515/crelle-2012-0049. See also arXiv:1105.2480v1 [math.AG]

  20. González Pérez, P.D., McEwan, L.J., Némethi, A.: The zeta-function of a quasi-ordinary singularity. II, Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001). In: Contemp. Math., vol. 324, pp. 109–122. Amer. Math. Soc. Providence (2003)

  21. Hironaka, H.: Introduction to the theory of infinitely near singular points. Memorias de Matematica del Instituto Jorge Juan, No. 28 Consejo Superior de Investigaciones Cientficas, Madrid (1974)

  22. Kiyek, K., Micus, M.: Semigroup of a quasiordinary singularity. Topics in algebra, Part 2 (Warsaw, 1988), 149156, Banach Center Publ., 26, Part 2. PWN, Warsaw (1990)

  23. Kiyek, K., Vicente, J.L.: On the Jung–Abhyankar theorem. Arch. Math. (Basel) 83(2), 123134 (2004)

    Article  MathSciNet  Google Scholar 

  24. Kiyek, K., Vicente, J.L.: Resolution of curve and surface singularities. In: Characteristic zero. Algebras and Applications, vol. 4. Kluwer, Dordrecht (2004) ISBN: 1-4020-2028-7

  25. Lipman, J.: Topological invariants of quasi-ordinary singularities. Mem. Am. Math. Soc. 74(388), 1–107 (1988)

    MathSciNet  Google Scholar 

  26. Luengo, I.: A new proof of the Jung–Abhyankar theorem. J. Algebra 85(2), 399–409 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Neumann, W.D., Wahl, J.: Complex surface singularities with integral homology sphere links. Geom. Topol. 9, 757–811 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Parusinski, A., Rond, G.: The Abhyankar–Jung theorem. J. Algebra 365(1), 29–41 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Popescu-Pampu, P.: Arbres de contact des singularités quasi-ordinaires et graphes d’adjacence pour les 3-variétés réelles, Ph.D Thesis, Université Paris-Diderot-Paris V (2001)

  30. Popescu-Pampu, P.: Two-dimensional iterated torus knots and quasi-ordinary surface singularities. C. R. Math. Acad. Sci. Paris 336(8), 651–656 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Popescu-Pampu, P.: On the analytical invariance of the semigroups of a quasi-ordinary hypersurface singularity. Duke Math. J. 124(1), 67–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Reydy, C.: Étude d’invariants des germes de courbes planes à l’aide des diagrammes de Newton, Ph.D. Thesis, Université Bordeaux I, pp. 1–157 (2002)

  33. Stanley, R.P.: Enumerative combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997)

  34. Walker, R.J.: Algebraic curves. Reprint of the 1950 edition. Springer, New York (1978)

Download references

Acknowledgments

I would like to thank very much E. Artal-Bartolo, Pi. Cassou-Noguès, P. D. González-Pérez, I. Luengo and A. Melle Hernández for several useful discussions and suggestions during the preparation of this work. I also the referees for interesting reports which sensibly reshaped this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel González Villa.

Additional information

Dedicated to Professor Heisuke Hironaka on the occasion of his 80th birthday.

Appendix: Newton trees

Appendix: Newton trees

In this subsection we illustrate graphically a Newton process associated to a q.o. polynomial, compare this illustration with the Newton trees introduced in [35] and give an alternative explanation to the canonical equations of q.o. hypersurfaces with given characteristic exponents mentioned in Remark 2.12.

Firstly, we represent a Newton process associated to a q.o. polynomial \(f\in \mathbf C \{x\}[z]\) with characteristic exponents \(\lambda _j\) and characteristic integers \(n_j\) with \(1 \le j \le g\) by the following decorated graph (see Fig. 1). The decorations \((Q^{j}_1, \dots , Q^{j}_d)\) and \(n_j\) are around the \(j\)th node but \((Q^{j}_1, \dots , Q^{j}_d)\) lies in the horizontal edge (in the upward vertical arrow for \(j=1\)) while \(n_j\) lies in the (downward) vertical arrow. Omit for the moment the variables attached to the arrows.

Fig. 1
figure 1

Decorated graph associated to the Newton process of an irreducible q.o. polynomial.

We use now a different notation for \(s_j\) than those introduced in Notation 3.1. Let us denote \(s_j\) as \((\frac{q^j_1}{n_j}, \dots , \frac{q^j _d}{n_j})\) where \(n_j\) is the \(j\)th characteristic number and therefore we have that \(\gcd (q^j_1, \dots , q^j_d, n_j) = r_j \ge 1\). Then we denote \((Q^{1}_1, \dots , Q^{1}_d) = n_1 s_1\) and

$$\begin{aligned} (Q^{j}_1, \dots , Q^{j}_d) = n_{j-1} n_j \left( \frac{Q^{j-1}_1}{\gcd (q^{j-1}_1, n_{j-1})}, \dots , \frac{Q^{j-1}_d}{\gcd (q^{j-1}_d, n_{j-1})}\right) + n_j s_j \end{aligned}$$

for \(2 \le j \le g\). It is easy to compare the decorations with the elements appearing in proposition 4.7. Let us denote \(\gcd (q^j, n_j)= (\gcd (q^j_1,n_1), \dots , \gcd (q^j_d, n_j))\) in particular we have that \((Q^{j}_1, \dots , Q^{j}_d)=\gcd (q^j, n_j) *\varvec{\gamma }^{[j]}_j\) for any \(1 \le j \le g\). It is worthwhile to notice that this decorations can be defined from the inclinations \(s_j\) by transformations rules similar to those of Proposition 4.7.

Remark 6.1

The decorated graph associated to the Newton process of an irreducible q.o. polynomial does not coincide with the Newton tree described in [35]. The difference arise when \(f\) is false reducible at any iteration. If \(f\) is false reducible at the \(j\)th iteration, the Newton tree is recovered from our diagram (and viceversa) unfolding the edge attached to the \(j\)th and \(j+1\)th nodes of our diagram into \(r_j\) edges and dividing the decorations around the \(j\)th node by \(r_j\). The Fig. 2 illustrates the difference for the polynomial of Example 3.6.

Fig. 2
figure 2

Newton tree (left) and our decorated graph (right) for Example 3.6

Finally we describe how to obtain the relations (iv) of Lemma 2.10 from the combinatorics of the diagram. In the case of plane curves there exists a topological theory to explain why this combinatorics work [27].

Now we attach to the arrows of our diagram variables, as showed in Fig. 1. Following the language of Eisenbud and Neumann [12] and Neumann and Wahl [27] we define weights for the nodes of the diagram as the product of the decorations around the node; i.e. \(\mathbf{w}(j) := n_j (Q^{j}_1, \dots , Q^{j}_d)\) for \(j \in \{1,\dots ,g\}.\) We also define weights of the variables \(x_1, \dots , x_d, z=u_1, \dots , u_{j+1}\) w.r.t. the \(j\)th nodes as the product of the normalized decorations adjacent to the path joining the node and the arrow corresponding to the variable. The adjective normalized in the definition of \(\mathbf{w}(\cdot ,j)\) means that we divide the \(i\)th coordinate of the weight by \(\gcd (n_r, q^r_i)\) if \(r < j\). More precisely, we have the following relations \(\mathbf{w}(x_i,j) = \gcd (q^j, n_j) *\varvec{\epsilon }^{[j]}_i\) for \(1 \le i \le d\) and \(1 \le j \le d\) and \(\mathbf{w}(u_k,j) = \gcd (q^j, n_j) *{\varvec{\gamma }}^{[j]}_k\) for \(1 \le k \le j\) and \(1 \le j \le d\).

It is easy to check that the condition (iv) of Lemma 2.10 is equivalent to the existence of integers \(0 \le l^{(j)}_i \le n_i-1\) and \(\alpha _k^{(j)} \in \mathbf Z _{\ge 0}\) such that

$$\begin{aligned} \mathbf{w}(j) = \alpha ^{(j)}_1 \mathbf{w}(x_1,j) + \cdots + \alpha ^{(j)}_d \mathbf{w}(x_d,j) + l^{(j)}_1 \mathbf{w}(u_1,j) + \cdots + l^{(j)}_{j-1} \mathbf{w}(u_{j-1},j). \end{aligned}$$

Example 6.2

In the case of the irreducible q.o. polynomial of Example 4.8, we have that the decorations of the first node are \((Q^1_1, Q^1_2)=(2,5)\) and \(n_1= 3\), of the second node are \((Q^2_1, Q^2_2)=(26,65)\) and \(n_2= 4\) and of the third node are \((Q^3_1, Q^3_2)=(262, 1316)\) and \(n_3= 5\). Moreover, we have that

$$\begin{aligned}&\mathbf{w}(x_1,1) = \varvec{\epsilon }^{[1]}_1 = (3,0), \quad \mathbf{w}(x_2,1) = \varvec{\epsilon }^{[1]}_2 = (0,3), \quad \mathbf{w}(u_1,1) = {\varvec{\gamma }}^{[1]}_1 = (2,5),\\&\mathbf{w}(x_1,2) = (12,0) \not = (6,0) = \varvec{\epsilon }^{[2]}_1, \quad \mathbf{w}(x_2,2) = \varvec{\epsilon }^{[2]}_2 = (0,12),\\&\mathbf{w}(u_1,2) = (8,20) \not = {\varvec{\gamma }}^{[2]}_1 = (4,20), \quad \mathbf{w}(u_2,2) = (26, 65) \not = {\varvec{\gamma }}^{[2]}_2 = (13, 65),\\&\mathbf{w}(x_1,3) = \varvec{\epsilon }^{[3]}_1 = (30,0), \quad \mathbf{w}(x_2,3) = \varvec{\epsilon }^{[3]}_2 = (0,60),\\&\mathbf{w}(u_1,3) = {\varvec{\gamma }}^{[3]}_1 = (20,100), \quad \mathbf{w}(u_2,3)= {\varvec{\gamma }}^{[3]}_1 = (65, 325), \\&\quad \mathbf{w}(u_3,3) = {\varvec{\gamma }}^{[3]}_1 = (262,1316). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

González Villa, M. Newton process and semigroups of irreducible quasi-ordinary power series. RACSAM 108, 259–279 (2014). https://doi.org/10.1007/s13398-013-0139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-013-0139-1

Keywords

Mathematics Subject Classification (2000)

Navigation