Skip to main content
Log in

A marriage of continuance: professional development for mathematics lecturers

  • Original Article
  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

In a 2-year project, we developed and trialled a mode of lecturing professional development amongst staff in our department of mathematics. Theoretically grounded in Schoenfeld’s resources, orientations, and goals (ROG) model of teacher action, a group met regularly to discuss both the video excerpts of themselves lecturing along with written pre- and post-lecture statements of their “ROGs”. We found evidence of improved teaching performance but more interestingly, identified key aspects of our practice and of undergraduate mathematics that received repeated attention and developed further theoretical insight into lecturer behaviour in mathematics. The trial has been successful enough to be expanded into further groups that now constitute a professional development culture within our department.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We note that what we refer to as lecturers are more often called instructors in the USA.

  2. Here we follow Artigue (2002) in considering pragmatic value as “productive potential (efficiency, cost, field of validity)” (p. 248) or how much can be efficiently accomplished using something and the epistemic value as a contribution “to the understanding of the objects they involve” (p. 248).

  3. A full bibliography of activity related to the project is available from the authors.

References

  • Aguirre, J., & Speer, N. M. (2000). Examining the relationship between beliefs and goals in teacher practice. The Journal of Mathematical Behavior, 18(3), 327–356.

    Article  Google Scholar 

  • Artigue, M. (2001). What can we learn from educational research at the university level? In D. A. Holton (Ed.), The teaching and learning of mathematics at university level: An ICMI study (pp. 207–220). Dordrecht: Kluwer.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. doi:10.1023/A:1022103903080.

    Article  Google Scholar 

  • Barton, B. (2011). Growing understanding of undergraduate mathematics: a good frame produces better tomatoes. International Journal of Mathematical Education in Science and Technology, 42(7), 963–974.

    Article  Google Scholar 

  • Breen, S., McCluskey, A., Meehan, M., O’Donovan, J., & O’Shea, A. (2012). Reflection on practice, in practice: the discipline of noticing. Informal Proceedings of the British Society for Research into Learning Mathematics (BSRLM), 31(3), 7–12.

    Google Scholar 

  • Carpenter, T. P., Blanton, M. L., Cobb, P., Franke, M. L., Kaput, J., & McLain, K. (2004). Scaling up innovative practices in mathematics and science. Research report from the national center for improving student learning and achievement in mathematics and science. Madison: University of Wisconsin.

    Google Scholar 

  • Coburn, C. E. (2003). Rethinking scale: moving beyond numbers to deep and lasting change. Educational Researcher, 32(6), 3–12.

    Article  Google Scholar 

  • Cohen, D. W. (1982). A modified Moore method for teaching undergraduate mathematics. American Mathematical Monthly, 89(7), 473–474. 487–490.

    Article  Google Scholar 

  • Grouws, D. A., & Cebulla, K. J. (2000). Improving student achievement in mathematics. Geneva: International Academy of Education.

    Google Scholar 

  • Hake, R. R. (1985). Interactive-engagement versus traditional methods: a six thousand student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66, 64–74.

    Article  Google Scholar 

  • Halloun, I., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–55.

    Article  Google Scholar 

  • Hannah, J., Stewart, S., & Thomas, M. O. J. (2011). Analysing lecturer practice: the role of orientations and goals. International Journal of Mathematical Education in Science and Technology, 42(7), 975–984.

    Article  Google Scholar 

  • Hannah, J., Stewart, S., & Thomas, M. O. J. (2012). Student reactions to an approach to linear algebra emphasising embodiment and language. Proceedings of the 12th International Congress on Mathematical Education (ICME-12) Topic study group 2, 1386–1393, Seoul, Korea.

  • Hannah, J., Stewart, S., & Thomas, M. O. J. (2013a). Conflicting goals and decision making: the influences on a new lecturer. In A. M. Lindmeier & A. Heinze (Eds.) Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 425–432), Kiel, Germany.

  • Hannah, J., Stewart, S., & Thomas, M. O. J. (2013b). Emphasizing language and visualization in teaching linear algebra. International Journal of Mathematical Education in Science and Technology, 44(4), 475–489. doi:10.1080/0020739X.2012.756545.

    Article  Google Scholar 

  • Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55, 440.

    Article  Google Scholar 

  • Jaworski, B. (2001). Developing mathematics teaching: teachers, teacher-educators and researchers as co-learners. In F.-L. Lin & T. J. Cooney (Eds.), Making sense of mathematics teacher education. Dordrecht: Kluwer.

    Google Scholar 

  • Jaworski, B. (2003). Research practice into/influencing mathematics teaching and learning development: towards a theoretical framework based on co-learning partnerships. Educational Studies in Mathematics, 54, 249–282.

    Article  Google Scholar 

  • Jaworski, B. (2006). Theory and practice in mathematics teaching development: critical inquiry as a mode of learning in teaching. Journal of Mathematics Teacher Education, 9, 187–211.

    Article  Google Scholar 

  • Jaworski, B., Treffert, S., & Bartsch, T. (2009). Characterising the teaching of university mathematics: a case of linear algebra. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd conference of the international group for the psychology of mathematics education (Vol. 3, pp. 249–256). Thessaloniki: IGPME.

    Google Scholar 

  • Kane, R., Sandretto, S., & Heath, C. (2004). An investigation into excellent tertiary teaching: emphasising reflective practice. Higher Education, 47, 283–310.

    Article  Google Scholar 

  • Kazemi, E., Franke, M., & Lampert, M. (2009). Developing pedagogies in teacher education to support novice teachers’ ability to enact ambitious instruction. In R. Hunter, B. Bicknell, & T. Burgess (Eds.), Crossing divides (Proceedings of the 32nd annual conference of the mathematics education research group of Australasia) (Vol. 1, pp. 11–29). Palmerston North: MERGA.

    Google Scholar 

  • Keynes, H., & Olson, A. (2001). Professional development for changing undergraduate mathematics instruction. In D. Holton (Ed.), The teaching and learning of mathematics at the university level: an ICMI study (pp. 113–126). Dordrecht: Kluwer.

    Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Markauskaite, L., Goodyear, P., & Reimann, P. (Eds.) (2006). Proceedings of the Australasian Society for Computers in Learning in Tertiary Education (ASCILITE). Available at http://www.ascilite.org.au/conferences/sydney06/proceeding/pdf_papers

  • Mason, J. (1989). Mathematical abstraction as the result of a delicate shift of attention. For the Learning of Mathematics, 9(2), 2–8.

    Google Scholar 

  • Mason, J. (2000). Asking mathematical questions mathematically. International Journal of Mathematical Education in Science and Technology, 31(1), 97–111.

    Article  Google Scholar 

  • Mason, J. (2002). Researching your own practice: the discipline of noticing. London: Routledge Falmer.

    Google Scholar 

  • Mason, J. (2008). Doing ≠ construing and doing + discussing ≠ learning: the importance of the structure of attention. Proceedings of ICME-10, Copenhagen (CD version of proceedings). Available from http://www.icme10.dk/proceedings/pages/regular_pdf/RL_John_Mason.pdf.

  • Mazur, E. (2009). Farewell lecture. Science, 2, 323(5910), 50–51.

    Article  Google Scholar 

  • Mehan, H. (1979). Learning lessons: social organization in the classroom. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Michaelsen, L. K., Knight, A. B., & Fink, L. D. (2002). Team-based learning: a transformative use of small groups. Westport: Praeger.

    Google Scholar 

  • Nardi, E., Jaworski, B., & Hegedus, S. (2005). A spectrum of pedagogical awareness for undergraduate mathematics: from ‘tricks’ to ‘techniques’. Journal for Research in Mathematics Education, 36(4), 284–316.

    Google Scholar 

  • Oates, G. (2009). Relative values of curriculum topics in undergraduate mathematics in an integrated technology environment. In B. Bicknell, R. Hunter, & T. Burgess (Eds.), Crossing divides (Proceedings of the 32nd annual conference of the mathematics education research group of Australasia, Vol. 2 pp. 419–426). Wellington, New Zealand.

  • Paterson, J., & Evans, T. (2013). Audience insights: feed forward in professional development. In D. King, B. Loch, & L. Rylands (Eds.), Proceedings of Lighthouse Delta, the 9th Delta conference of teaching and learning of undergraduate mathematics and statistics through the fog (pp. 132–140). Kiama: Delta.

    Google Scholar 

  • Paterson, J., Thomas, M. O. J., Postlethwaite, C., & Taylor, S. (2011a). The internal disciplinarian: who is in control? In S. Brown, S. Larsen, K. Marrongelle, and M. Oehrtman (Eds.), Proceedings of the 14th annual conference on research in undergraduate mathematics education (Vol. 2, pp. 354–368). Portland, Oregon.

  • Paterson, J., Thomas, M. O. J., & Taylor, S. (2011b). Reaching decisions via internal dialogue: its role in a lecturer professional development model. In B. Ubuz (Ed.), Proceedings of the 35th conference of the international group for the psychology of mathematics education (Vol. 3, pp. 353–360). Ankara: IGPME.

    Google Scholar 

  • Paterson, J., Thomas, M. O. J., & Taylor, S. (2011c). Decisions, decisions, decisions: what determines the path taken in lectures? International Journal of Mathematical Education in Science and Technology, 42(7), 985–996.

    Article  Google Scholar 

  • Prushiek, J., McCarty, B., & Mcintyre, S. (2001). Transforming professional development for preservice, inservice and university teachers through a collaborative capstone experience. Education, 121(4), 704–712.

    Google Scholar 

  • Rowland, S. (2000). The enquiring university teacher. Philadelphia: OU Press.

    Google Scholar 

  • Russ, R. S., Sherin, B., & Sherin, M. G. (2011). Images of expertise in mathematics teaching. Expertise in Mathematics Instruction: An International Perspective, 41–60.

  • Schoenfeld, A. H. (2008). On modeling teachers’ in-the-moment decision-making. In A. H. Schoenfeld (Ed.), A study of teaching: multiple lenses, multiple views (Journal for Research in Mathematics Education Monograph 14, pp. 45–96). Reston, VA: NCTM.

  • Schoenfeld, A. H. (2010). How we think. A theory of goal-oriented decision making and its educational applications. New York: Routledge.

    Google Scholar 

  • Selden, A., & Selden, J. (2001). Tertiary mathematics education research and its future. In D. Holton (Ed.), The teaching and learning of mathematics at the university level: an ICMI study (pp. 207–220). The Netherlands: Kluwer.

    Google Scholar 

  • Speer, N. M. (2008). Connecting beliefs and practices: a fine-grained analysis of a college mathematics teacher’s collections of beliefs and their relationship to his instructional practices. Cognition and Instruction, 26(2), 218–267.

    Article  Google Scholar 

  • Speer, N. M., Smith, J. P., & Horvath, A. (2010). Collegiate mathematics teaching: an unexamined practice. The Journal of Mathematical Behavior, 29, 99–114.

    Article  Google Scholar 

  • Thagard, P. (2000). Coherence in thought and action. Cambridge: MA: MIT Press.

    Google Scholar 

  • Törner, G., Rolke, K., Rösken, B., & Sririman, B. (2010). Understanding a teacher’s actions in the classroom by applying Schoenfeld’s theory teaching-in-context: reflecting on goals and beliefs. In B. Sriraman & L. English (Eds.), Theories of mathematics education, advances in mathematics education (pp. 401–420). Berlin: Springer.

    Chapter  Google Scholar 

  • Wagner, J. (1997). The unavoidable intervention of educational research: a framework for reconsidering research-practitioner cooperation. Educational Researcher, 26(7), 13–22.

    Article  Google Scholar 

  • Wells, G. (1999). Dialogic inquiry: towards a sociocultural practice and theory of education. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wenger, E. (1998). Communities of practice: learning, meaning and identity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of a Teaching and Learning Research Initiative (TLRI) grant funded through the New Zealand Council for Educational Research. We also recognise the collaborative work of the following team members on the project: Steven Galbraith, Mike Meylan, Claire Postlethwaite, and Steve Taylor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barton, B., Oates, G., Paterson, J. et al. A marriage of continuance: professional development for mathematics lecturers. Math Ed Res J 27, 147–164 (2015). https://doi.org/10.1007/s13394-014-0134-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-014-0134-7

Keywords

Navigation