Skip to main content
Log in

Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) integrated circuits (ICs) are the most important packaging technology for next-generation semiconductors. Cu-to-Cu throughsilicon via interconnections with micro-bumps are key components in the fabrication of 3D ICs. However, significant reliability concerns have been raised due to the formation of brittle intermetallic compounds in the entire 3D IC joints. This study proposes a Ga-based Cu-to-Cu bonding technology with Pt under bump metallurgy (UBM). A systematic analysis of reactive wetting between Ga solders and polycrystalline, single-crystalline, and Ptcoated Cu substrates was conducted. Pt UBM as a wetting layer was identified to be a key component for Ga-based Cu-to-Cu bonding. Pt-coated Cu substrates were bonded using Ga solders with various Ga-to-Pt ratios (n) at 300℃. When n ≥ 4, the Cu/Pt/Ga/Pt/Cu interface evolves to Cu/facecentered cubic (fcc)/γ1-Cu9Ga4/fcc/Cu, Cu/fcc/γ1-Cu9Ga4 + Ga7Pt3/fcc/Cu, and finally Cu/fcc + Ga7Pt3/Cu structures. The desired ductile solid solution joint formed with discrete Ga7Pt3 precipitates. When n ≤ 1, a Cu/Ga7Pt3/Cu joint formed without Cu actively participating in the reactions. The reaction mechanism and microstructure evolution were elaborated with the aid of CALPHAD thermodynamic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Lau, Microelectron. Int. 28, 8 (2011).

    Article  Google Scholar 

  2. M. Motoyoshi, P. IEEE 97, 43 (2009).

    Article  Google Scholar 

  3. K. Chen, C. Tan, A. Fan, and R. Reif, Electrochem. Solid St. 7, 14 (2004).

    Article  Google Scholar 

  4. E.-J. Jang, J.-W. Kim, B. Kim, T. Matthias, and Y.-B. Park, Met. Mater. Int. 17, 105 (2011).

    Article  Google Scholar 

  5. C.-T. Ko and K.-N. Chen, Microelectron. Reliab. 50, 481 (2010).

    Article  Google Scholar 

  6. Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, Microelectron. Reliab. 52, 312 (2012).

    Article  Google Scholar 

  7. R. Agarwal, W. Zhang, P. Limaye, and W. Ruythooren, Proc. IEEE Electronic Components and Technology Conference, p. 345, IEEE Inst. Elec. Electron. Eng. Inc., San Diego, USA (2009).

    Google Scholar 

  8. J. Li, P. Agyakwa, and C. Johnson, Acta Mater. 59, 1198 (2011).

    Article  Google Scholar 

  9. G. Zeng, S. Xue, L. Zhang, and L. Gao, J. Mater. Sci.-Mater. El. 22, 565 (2011).

    Article  Google Scholar 

  10. S.-K. Lin, C.-L. Cho, and H.-M. Chang, J. Electron. Mater. 43, 204 (2014).

    Article  Google Scholar 

  11. G. O. Cook, and C. D. Sorensen, J. Mater. Sci. 46, 5305 (2011).

    Article  Google Scholar 

  12. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, and W. Oates, Calphad 33, 328 (2009).

    Article  Google Scholar 

  13. J.-B. Li, L. Ji, J. Liang, Y. Zhang, J. Luo, C. Li, and G. Rao, Calphad 32, 447 (2008).

    Article  Google Scholar 

  14. J. Wang, S. Jin, W. Zhu, H. Dong, X. Tao, H. Liu, and Z. Jin, Calphad 33, 561 (2009).

    Article  Google Scholar 

  15. T. Abe, B. Sundman, and H. Onodera, J. Phase Equilib. Diff. 27, 5 (2006).

    Article  Google Scholar 

  16. R. Picha, J. Vreštál, and A. Kroupa, Calphad 28, 141 (2004).

    Article  Google Scholar 

  17. B. J. Keene, Int. Mater. Rev. 38, 157 (1993).

    Article  Google Scholar 

  18. S.-P. Sun, D.-Q. Yi, and B. Zang, Chinese J. Nonferrous Metal. 20, 930 (2010).

    Article  Google Scholar 

  19. K. Mukai, T. Matsushita, K. C. Mills, S. Seetharaman, and T. Furuzono, Metall. Mate. Trans. B 39, 561 (2008).

    Article  Google Scholar 

  20. ASM Handbook: Alloy Phase Diagrams, ASM International, Materials Park, OH, USA (1992).

    Google Scholar 

  21. K. A. Narh, V. P. Dwivedi, and J. M. Grow, J. Mater. Sci. 33, 329 (1998).

    Article  Google Scholar 

  22. Y.-G. Deng and J. Liu, Appl. Phys. A-Mater. 95, 907 (2009).

    Article  Google Scholar 

  23. M. G. Nicolas and C. F. Old, J. Mater. Sci. 14, 1 (1979).

    Article  Google Scholar 

  24. S. C. Hardy, J. Cryst. Growth 71, 602 (1985).

    Article  Google Scholar 

  25. C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, Mat. Sci. Eng. R 44, 1 (2004).

    Article  Google Scholar 

  26. S.-W. Chen, S.-W. Lee, and M. C. Yip, J. Electron. Mater. 32, 1284 (2003).

    Article  Google Scholar 

  27. S. M. Hayes, N. Chawla, and D. R. Frear, Microelectron. Reliab. 49, 269 (2009).

    Article  Google Scholar 

  28. J. W. Yoon, S. W. Kim, and S. B. Jung, Mater. Trans. 45, 727 (2004).

    Article  Google Scholar 

  29. D. Swenson and B. Morosin, J. Alloy. Compd. 243, 173 (1996).

    Article  Google Scholar 

  30. Y. Xu, M. Yamazaki, and P. Villars, Jpn. J. Appl. Phys. 50, 11–02 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-kang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Sk., Chang, Hm., Cho, Cl. et al. Formation of solid-solution Cu-to-Cu joints using Ga solder and Pt under bump metallurgy for three-dimensional integrated circuits. Electron. Mater. Lett. 11, 687–694 (2015). https://doi.org/10.1007/s13391-015-5015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5015-z

Keywords

Navigation