Skip to main content
Log in

Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramics as a solid electrolyte was reviewed. Sulfide glasses and glass-ceramics in the system Li2S-P2S5 have an advantage of high conductivity, wide electrochemical window and low grain-boundary resistance. Bulk-type solid-state batteries composed of compressed powder layers of electrode and electrolyte were fabricated with Li2S-P2S5 glass-ceramic electrolytes. Formation of a favorable solid-solid interface between electrode and electrolyte is a key to achieving excellent performance in solid-state batteries. The mechanochemical preparation of nanocomposite electrodes and surface modification of active materials by softening of the electrolyte, or PLD coating, were useful for increasing the electrode-electrolyte contact area and improving battery performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon and M. Armand, Nature 414, 359 (2001).

    Article  CAS  Google Scholar 

  2. C. Julien and G. A. Nazri, Solid State Batteries: Materials Design and Optimization, Kluwer Academic Publishers, Boston (1994).

    Book  Google Scholar 

  3. T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohjiya, and I. Tanaka, Solid State Ionics for Batteries, Springer-Verlag, Tokyo (2005).

    Book  Google Scholar 

  4. A. D. Robertson, A. R. West, and A. G. Ritchie, Solid State Ionics 104, 1 (1997).

    Article  CAS  Google Scholar 

  5. J. W. Fergus, J. Power Sources 195, 4554 (2010).

    Article  CAS  Google Scholar 

  6. A. Hayashi, S. Hama, T. Minami, and M. Tatsumisago, Electrochem. Commun. 5, 111 (2003).

    Article  CAS  Google Scholar 

  7. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, Adv. Mater. 17, 918 (2005).

    Article  CAS  Google Scholar 

  8. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, Solid State Ionics 177, 2721 (2006).

    Article  CAS  Google Scholar 

  9. A. Hayashi, K. Minami, S. Ujiie, and M. Tatsumisago, J. Non-Cryst. Solids 356, 2670 (2010).

    Article  CAS  Google Scholar 

  10. Y. Seino, T. Ota, T. Jyunke, and K. Yanagi, Extend Abstracts of the 36 th Symposium on Solid State Ionics in Japan, pp. 116 (2010) (in Japanese).

  11. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, Nat. Mater. 10, 682 (2011).

    Article  CAS  Google Scholar 

  12. M. Ito, Y. Inaguma, W.H. Jung, L. Chen, and T. Nakamura, Solid State Ionics 70-71, 203 (1994).

    Article  Google Scholar 

  13. H. Aono, E. Sugimono, Y. Sadaoka, N. Imanaka, and G. Adachi, J. Electrochem. Soc. 137, 1023 (1990).

    Article  CAS  Google Scholar 

  14. R. Murugan, Thangadural, and W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007).

    Article  CAS  Google Scholar 

  15. M. Tatsumisago, N. Machida, and T. Minami, J. Ceram. Soc. Jpn. 95, 197 (1987).

    CAS  Google Scholar 

  16. X. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, J. Electrochem. Soc. 144, 524 (1997).

    Article  CAS  Google Scholar 

  17. K. Kanehori, K. Matsumoto, K. Miyauchi, and T. Kudo, Solid State Ionics, 9–10, 1445 (1983).

    Article  Google Scholar 

  18. J. Fu, Solid State Ionics 96, 195 (1997).

    Article  CAS  Google Scholar 

  19. J. Fu, Solid State Ionics 104, 191 (1997).

    Article  CAS  Google Scholar 

  20. R. Kanno and M. Murayama, J. Electrochem. Soc. 148, A742 (2001).

    Article  CAS  Google Scholar 

  21. H. Wada, M. Menetrier, A. Levasseur, and P. Hagenmuller, Mater. Res. Bull. 18, 189 (1983).

    Article  CAS  Google Scholar 

  22. N. Aotani, K. Iwamoto, K. Takada, and S. Kondo, Solid State Ionics 68, 35 (1994).

    Article  CAS  Google Scholar 

  23. K. Hirai, M. Tatsumisago, and T. Minami, Solid State Ionics 78, 269 (1995).

    Article  CAS  Google Scholar 

  24. Z. Zhang and J. H. Kennedy, Solid State Ionics 38, 217 (1990).

    Article  CAS  Google Scholar 

  25. M. Ribes, B. Barrau, and J. L. Souquet, J. Non-Cryst. Solids 38-39, 271 (1980).

    Article  CAS  Google Scholar 

  26. H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, and M. Tatsumisago, Solid State Ionics 178, 1163 (2007).

    Article  CAS  Google Scholar 

  27. K. Minami, A. Hayashi, and M. Tatsumisago, J. Ceram. Soc. Jpn. 118, 305 (2010).

    Article  CAS  Google Scholar 

  28. A. Hayashi, S. Hama, F. Mizuno, K. Tadanaga, T. Minami, and M. Tatsumisago, Solid State Ionics 175, 683 (2004).

    Article  CAS  Google Scholar 

  29. K. Minami, A. Hayashi, S. Ujiie, and M. Tatsumisago, Solid State Ionics 192, 122 (2011).

    Article  CAS  Google Scholar 

  30. H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, Solid State Ionics 182, 116 (2011).

    Article  CAS  Google Scholar 

  31. M. Tachez, J. P. Malugani, R. Mercier, and G. Robert, Solid State Ionics 14, 181 (1984).

    Article  CAS  Google Scholar 

  32. K. Iwamoto, N. Aotani, K. Takada, and S. Kondo, Solid State Ionics 70-71, 658 (1994).

    Article  CAS  Google Scholar 

  33. M. Tatsumisago and A. Hayashi, Funct. Mater. Lett. 1, 31 (2008).

    Article  CAS  Google Scholar 

  34. D. Marmorstein, T. H. Yu, K. A. Striebel, F. R. McLarnon, J. Hou, and E. J. Cairns, J. Power Sources 89, 219 (2000).

    Article  CAS  Google Scholar 

  35. X. Ji and L. F. Nazar, J. Mater. Chem. 20, 9821 (2010).

    Article  CAS  Google Scholar 

  36. N. Machida, K. Kobayashi, Y. Nishikawa, and T. Shigematsu, Solid State Ionics 175, 247 (2004).

    Article  CAS  Google Scholar 

  37. A. Hayashi T. Ohtomo, F. Mizuno, K. Tadanaga, and M. Tatsumisago, Electrochem. Commun. 5, 701 (2003).

    Article  Google Scholar 

  38. M. Nagao, A. Hayashi, and M. Tatsumisago, Electrochim. Acta 56, 6055 (2011).

    Article  CAS  Google Scholar 

  39. A. Hayashi, R. Ohtsubo, T. Ohtomo, F. Mizuno, and M. Tatsumisago, J. Power Sources 183, 422 (2008).

    Article  CAS  Google Scholar 

  40. T. Takeuchi, H. Kageyama, K. Nakanishi, M. Tabuchi, H. Sakaebe, T. Ohta, H. Senoh, T. Sakai, and K. Tatsumi, J. Electrochem. Soc. 157, A1196 (2010).

    Article  CAS  Google Scholar 

  41. M. Nagao, A. Hayashi, and M. Tatsumisago, J. Mater. Chem in press (2012). [DOI:10.1039/c2jm16802b]i

  42. A. Hayashi, Y. Nishio, H. Kitaura, and M. Tatsumisago, Electrochem. Commun. 10, 1860 (2008).

    Article  CAS  Google Scholar 

  43. Y. Nishio, H. Kitaura, A. Hayashi, and M. Tatsumisago, J. Power Sources 189, 629 (2009).

    Article  CAS  Google Scholar 

  44. A. Hayashi, A. Inoue, and M. Tatsumisago, J. Power Sources 189, 669 (2009).

    Article  CAS  Google Scholar 

  45. H. Kitaura, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, J. Mater. Chem. 21, 118 (2011).

    Article  CAS  Google Scholar 

  46. N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, and T. Sasaki, Adv. Mater. 18, 2226 (2006).

    Article  CAS  Google Scholar 

  47. N. Ohta, K. Takada, I. Sakaguchi, L. Zhang, R. Ma, K. Fukuda, M. Osada, and T. Sasaki, Electrochem. Commun. 9, 1486 (2007).

    Article  CAS  Google Scholar 

  48. A. Sakuda, A. Hayashi, and M. Tatsumisago, Chem. Mater. 22, 949 (2010).

    Article  CAS  Google Scholar 

  49. A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, Electrochem. Solid-State Lett. 13, A73 (2010).

    Article  CAS  Google Scholar 

  50. A. Sakuda, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, J. Power Sources 196, 6735 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Hayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, A., Tatsumisago, M. Invited paper: Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes. Electron. Mater. Lett. 8, 199–207 (2012). https://doi.org/10.1007/s13391-012-2038-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2038-6

Keywords

Navigation