Skip to main content
Log in

Investigation of Nanofluid Flow and Heat Transfer in Presence of Magnetic Field Using KKL Model

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, flow and heat transfer of a nanofluid in a square cavity with curve boundaries in presence of magnetic field is investigated numerically using lattice Boltzmann method. The base fluid in the enclosure is water containing Al2O3. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo–Kleinstreuer–Li) correlation. In this model effect of Brownian motion on the effective thermal conductivity is considered. This investigation when compared with other numerical methods was found to be in excellent agreement. The influence of the nanoparticle volume fraction, Rayleigh number and Hartmann number on flow and heat transfer is investigated. The results show that enhancement in heat transfer increases with increase of Hartmann number except for Ra = 104 in which Ha = 40 roles as a critical Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Magnetic field

c :

Lattice speed

c i :

Discrete particle speeds

C p :

Specific heat at constant pressure

F :

External forces

f :

Density distribution functions

f eq :

Equilibrium density distribution functions

Gr :

Grashof number

g :

Internal energy distribution functions

g eq :

Equilibrium internal energy distribution functions

g y :

Gravitational acceleration (m s −2)

k :

Thermal conductivity

Ha :

Hartmann number \({(=LB\sqrt {\sigma /\mu} )}\)

L :

Height or width of the adiabatic wall

Nu :

Local Nusselt number

p :

Pressure (Pa)

Pr :

Prandtl number (= υ /α)

Ra :

Rayleigh number (= g β ΔTL 3/α υ)

R :

Radius of curve boundary

T :

Fluid temperature

(u, v):

Velocity components in (x, y) directions, respectively

(x,y):

Cartesian coordinates

(X, Y):

Dimensionless coordinates

α :

Thermal diffusivity (m2 s−1)

θ :

Dimensionless temperature

μ :

Dynamic viscosity (Pa s−1)

υ :

Kinematic viscosity (m2 s)

ζ :

Angle measured from the up point of curve boundary

σ :

Electrical conductivity

ρ :

Fluid density (kg m−3)

τ c :

Relaxation time for temperature

τ v :

Relaxation time for flow

θ M :

Direction of the magnetic field

β :

Thermal expansion coefficient (K−1)

ψ :

Stream function

c:

Cold

h:

Hot

nf:

Nanofluid

f:

Base fluid

s:

Solid particles

ave:

Average

loc:

Local

References

  1. Rudraiah, N.; Barron, R.M.; Venkatachalappa, M.; Subbaraya, C.K.: Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci 33(8),1075–1084 (1995)

    Article  MATH  Google Scholar 

  2. Kefayati, G.H.R.; Gorji-Bandpy,M.; Sajjadi, H.; Ganji, D.D.: Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall. Scientia Iranica B. 19(4), 1053–1065 (2012)

    Article  Google Scholar 

  3. Sheikholeslami, M.;Ashorynejad, H.R.; Domairry, D.; Hashim, I.: Investigation of the laminar viscous flow in a semi-porous channel in the presence of uniform magnetic field using optimal homotopy asymptotic method. Sains Malays. 41(10), 1177–1229 (2012)

    Google Scholar 

  4. Khanafer, K.; Vafai, K.;Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Article  MATH  Google Scholar 

  5. Sheikholeslami, M.; Ganji, D.D.: Heat transfer of Cu–water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)

    Article  Google Scholar 

  6. Ashorynejad, H.R.; Sheikholeslami, M.; Pop, I.; Ganji, D.D.: Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf. doi:10.1007/s00231-012-1087-6

  7. Abu-Nada, E.; Masoud, Z.;Hijazi, A.: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 35, 657–665 (2008)

    Article  Google Scholar 

  8. Soleimani, S.; Sheikholeslami,M.; Ganji, D.D.; Gorji-Bandpay, M.: Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int. Commun. Heat Mass Transf. 39, 565–574 (2012)

    Article  Google Scholar 

  9. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: MHD natural convection in a nanofluid filled inclined enclosure with sinusoidal wall using CVFEM. Neural Comput. Appl. doi:10.1007/s00521-012-1316-4

  10. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.; Seyyedi, S.M.: Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of magnetic field. Int. Commun. Heat Mass Transf. 39, 1435–1443 (2012)

    Google Scholar 

  11. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Rana, P.; Soleimani, S.: Magnetohydrodynamic free convection of Al2O3–water nanofluid considering Thermophoresis and Brownian motion effects. Comput. Fluids 94, 147–160 (2014)

    Google Scholar 

  12. Mohamad, A.A.; Kuzmin, A.:A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int. J. Heat Mass Transf. 53, 990–996 (2010)

    Google Scholar 

  13. Sheikholeslami, M.; Gorji-Bandpy, M.: Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field. Powder Technol. 256, 490–498 (2014)

    Google Scholar 

  14. Ashorynejad, H.R.; Mohamad, A.A.; Sheikholeslami, M.: Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int. J. Therm. Sci. 64, 240–250 (2013)

    Google Scholar 

  15. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.: Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy 60, 501–510 (2013)

    Google Scholar 

  16. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.: Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol. 254, 82–93 (2014)

    Google Scholar 

  17. Sheikholeslami, M.; Gorji-Bandpay, M.; Ganji, D.D.: Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int. Commun. Heat Mass Transf. 39, 978–986 (2012)

    Google Scholar 

  18. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with Cu–water nanofluid using CVFEM. Adv. Powder Technol. doi:10.1016/j.apt.2013.01.012

  19. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Thermal management for free convection of nanofluid using two phase model. J. Mol. Liq. 194, 179–187 (2014)

    Google Scholar 

  20. Sheikholeslami, M.; Ganji, D.D.; Ashorynejad, H.R.; Rokni, H.B.: Analytical investigation of Jeffery–Hamel flow with high magnetic field and nano particle by Adomian decomposition method. Appl. Math. Mech. Engl. Edn. 33(1), 1553–1564 (2012)

    Google Scholar 

  21. Sheikholeslami, M.; Ashorynejad, H.R.; Domairry G.; Hashim, I.: Flow and heat transfer of Cu–water nanofluid between a stretching sheet and a porous surface in a rotating system. J. Appl. Math. 2012. doi:10.1155/2012/421320. Article ID 421320

  22. Sheikholeslami, M.; Ganji, D.D.; Ashorynejad, H.R.: Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol. 239, 259–265 (2013)

    Article  Google Scholar 

  23. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Natural convection heat transfer in a cavity with sinusoidal wall filled with CuO–water nanofluid in presence of magnetic field. J. Taiwan Inst. Chem. Eng. doi:10.1016/j.jtice.2013.04.019

  24. Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D.D.; Soleimani, S.: Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J. Mol. Liq. 193, 174–184 (2014)

    Google Scholar 

  25. Sheikholeslami, M.; Gorji Bandpy, M.; Soleimani S.: Two phase simulation of nanofluid flow and heat transfer using heatline analysis. Int. Commun. Heat Mass Transf. 47, 73–81 (2013)

    Google Scholar 

  26. Sheikholeslami, M.; Gorji Bandpy, M.; Ellahi, R.; Hassan, M.; Soleimani S.: Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM. J. Magn. Magn. Mater. 349, 188–200 (2014)

    Google Scholar 

  27. Kao, P.H.; Yang, R.J.: Simulating oscillatory flows in Rayleigh Benard convection using the lattice Boltzmann method. Int. J. Heat Mass Transf. 50, 3315–3328 (2007)

    Article  MATH  Google Scholar 

  28. Barrios, G.; Rechtman, R.; Rojas, J.; Tovar, R.: The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall. J. Fluid Mech. 522, 91–100 (2005)

    Google Scholar 

  29. Yan, Y.Y.; Zu, Y.Q.: Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach. Int. J. Heat Mass Transf. 51, 2519–2536 (2008)

    Google Scholar 

  30. Koo, J.; Kleinstreuer, C.: Viscous dissipation effects in micro tubes and micro channels. Int. J. Heat Mass Transf. 47, 3159–3169 (2004)

    Article  Google Scholar 

  31. Koo, J.: Computational nanofluid flow and heat transfer analyses applied to microsystems. Ph.D Thesis, NC State University, Raleigh, NC (2004)

  32. Prasher, R.S.; Bhattacharya, P.; Phelan, P.E.: Thermal conductivity of nano scale colloidal solution. Phys. Rev. Lett. 94, 025901 (2005)

    Article  Google Scholar 

  33. Jang, S.P.; Choi, S.U.S.: The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Article  Google Scholar 

  34. Sheikholeslami, M.; Ganji, D.D.; Gorji-Bandpy, M.; Soleimani, S.: Magnetic field effect on nanofluid flow and heat transfer using KKL model. J. Taiwan Inst. Chem. Eng. 45, 795–807 (2014)

    Article  Google Scholar 

  35. Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks. Int. J. Heat Mass Transf. 48, 2652–2661 (2005)

    Article  MATH  Google Scholar 

  36. Davis, G.D.V.: Natural convection of air in a square cavity, a bench mark solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheikholeslami, M., Gorji-Bandpy, M. & Ganji, D.D. Investigation of Nanofluid Flow and Heat Transfer in Presence of Magnetic Field Using KKL Model. Arab J Sci Eng 39, 5007–5016 (2014). https://doi.org/10.1007/s13369-014-1060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1060-4

Keywords

Navigation