Skip to main content
Log in

Comparison Between the Properties of Al–TiC and Al–(TiC+Fe3C+Fe2Ti+Fe) Composites

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper aims to study the efficacy of (TiC+Fe3C+Fe2Ti+Fe) powder mixture produced by a new synthesis technique utilizing a cheap source of Fe–Ti and C (in terms of wear resistance and hardness). The powder product was used as reinforcement in Al matrix. Composites were produced by mixing 20 wt% of the reinforcing powder and 80 wt% of Al followed by 10 ton cold pressing and sintering for 2 h at 500 °C. The composites reinforced with the synthesized powders were compared with the composites produced using pure TiC as reinforcement material. Wear rate and hardness of composites using synthesized TiC mixture as the reinforcement material were found to be very close to that produced with pure TiC. The results of wear and hardness thus confirm that the synthesized powders containing TiC, Fe3C, Fe2Ti, and Fe can replace pure TiC in aluminum matrix composite applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee D.W., Kim B.K.: Synthesis of nano-structured titanium carbide by Mg-thermal reduction. Scripta Metallurgica Materialia 48, 1513–1518 (2003)

    Article  Google Scholar 

  2. Tong L., Reddy R.G.: Synthesis of titanium carbide nano-powders by thermal plasma. Scripta Metallurgica Materialia 52, 1253–1258 (2005)

    Article  Google Scholar 

  3. Hsu S., Meyers M.A., Berkowitz A.: Synthesis of nanocrystalline titanium carbide by spark erosion. Scripta Metallurgica Materialia 32, 805–808 (1995)

    Article  Google Scholar 

  4. Kumar S., Singh R., Singh T.P., Sethi B.L.: Review surface modification by electrical discharge machining: a review. J. Mater. Process. Technol. 209, 3675–3687 (2009)

    Article  Google Scholar 

  5. Ye L.L., Quan M.X.: Synthesis of nanocrystalline TiC powders by mechanical alloying. Nanostruct. Mater. 5, 25–31 (1995)

    Article  Google Scholar 

  6. Ali M., Basu P.: Mechanochemical synthesis of nanostructured titanium carbide from industrial Fe–Ti. J. Alloys Compd. 491, 581–583 (2010)

    Article  Google Scholar 

  7. Kennedy A.R., Wyatt S.M.: Characterising particle–matrix interfacial bonding in particulate Al–TiC MMCs produced by different methods. Compos. Part A 32, 555–559 (2001)

    Article  Google Scholar 

  8. Albitera A., Contrerasa A., Bedollab E., Pereza R.: Structural and chemical characterization of precipitates in Al-2024/TiC composites. Compos. Part A 34, 17–24 (2003)

    Article  Google Scholar 

  9. Karantzalis A.E., Lekatou A.E., Poulas G.V., Mavros H.: Microstructural observations in a cast Al-Si-Cu/TiC composite. J. Mater. Eng. Perform. 19, 585–590 (2009)

    Article  Google Scholar 

  10. Nukami T.: The growth of TiC particles in an Al matrix. J. Mater. Sci. Lett. 17, 267–269 (1998)

    Article  Google Scholar 

  11. Ramesh K.C., Sagar R.: Fabrication of metal matrix composite automotive parts. India Int. J. Adv. Manuf. Technol. 15, 114–118 (1999)

    Article  Google Scholar 

  12. Terry B.S., Chinyamakobvu O.S.: In situ production of Fe-TiC composites by reactions in liquid iron alloys. J. Mater. Sci. Lett. 10, 628–629 (1991)

    Article  Google Scholar 

  13. Sen S., Stefanescu D.M., Dhindaw B.K.: Melt-processed Ni3Al matrix composites reinforced with TiC particles. Metall. Mater. Trans A 25, 2525–2534 (1994)

    Article  Google Scholar 

  14. Yasmin T., Khalid A.A., Haque M.M.: Tribological (wear) properties of aluminum–silicon eutectic base alloy under dry sliding condition. J. Mater. Process. Technol. 154, 833–838 (2004)

    Article  Google Scholar 

  15. Alman D.E., Hawk J.A.: Abrasive wear behavior of a brittle matrix (MoSi2) composite reinforced with a ductile phase (Nb). Wear 251, 890–900 (2001)

    Article  Google Scholar 

  16. Niu, H.J.; Hampshire, D.P.: Fabrication of nanocrystalline and amorphous Chevrel phase PbMo6S8 powder by ball milling. Physica C 372–376, 1145–1147 (2002)

    Google Scholar 

  17. Panagopoulos C.N., Georgarakis K.G., Anagnostopoulou A.: The influence of grain size on the sliding wear behaviour of zinc. Mater. Lett. 60, 133–136 (2006)

    Article  Google Scholar 

  18. Lee J.W., Munir Z.A., Ohyanagi M.: Dense nanocrystalline TiB2–TiC composites formed by field activation from high-energy ball milled reactants. Mater. Sci. Eng. A 325, 221–227 (2002)

    Article  Google Scholar 

  19. Zhang S., Bui X.L., Jiang J., Li X.: Microstructure and tribological properties of magnetron sputtered nc-TiC/a-C nanocomposite. Surf. Coat. Technol, 198, 206–211 (2005)

    Article  Google Scholar 

  20. Wereszczak A.A., Lin H.T., Gilde G.A.: The effect of grain growth on hardness in hot-pressed silicon carbides. J. Mater. Sci. 41, 4996–5000 (2006)

    Article  Google Scholar 

  21. Zgalat-Lozinskii O.B., Bulanov V.N., Timofeeva I.I., Ragulya A.V., Skorokhod V.V.: Sintering of refractory compounds nanocrystalline powders. ii. Non-isothermal sintering of titanium nitride powder. Powder Metall. Metal. Ceram. 40, 11–12 (2001)

    Google Scholar 

  22. Nath A.K., Jiten C., Singh K.C.: Influence of ballmilling parameters on the particle size of bariumtitanate nanocrystalline powders. Physica B. 405, 430–434 (2010)

    Article  Google Scholar 

  23. Meric C., Atik E., Kacar H.: Effect of aging on abrasive wear of deformable aluminum alloy AA6351. Metal Sci. Heat Treat. 46, 3–4 (2004)

    Article  Google Scholar 

  24. Farid A., Guo S., Yang X., Lian Y.: Stainless steel binder for the development of novel Tic-reinforced steel cermets. J. Univ. Sci. Technol. Beijing. 13, 546–550 (2006)

    Article  Google Scholar 

  25. Yang Q., Senda T., Ohmori A.: Effect of carbide grain size on microstructure and sliding wearbehavior of HVOF-sprayed WC–12% Co coatings. Wear 254, 23–34 (2003)

    Article  Google Scholar 

  26. Albiter A., Contreras A., Bedolla E., Perez R.: Structural and chemical characterization of precipitates in Al-2024/TiC composites. Compos. Part A. 34, 17–24 (2003)

    Article  Google Scholar 

  27. Kenned A.R.: Characterising particle–matrix interfacial bonding in particulate Al–TiC MMCs produced by different methods. Compos Part A. 32, 555–559 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, M., Basu, P., Liwa, M. et al. Comparison Between the Properties of Al–TiC and Al–(TiC+Fe3C+Fe2Ti+Fe) Composites. Arab J Sci Eng 38, 2785–2791 (2013). https://doi.org/10.1007/s13369-012-0480-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0480-2

Keywords

Navigation