Skip to main content
Log in

Regional Assessment of Monthly Soil Temperatures in the Aegean Region of Turkey

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An artificial neural network (ANN) model was developed to predict monthly soil temperatures in the Aegean Region of Turkey. The model used soil temperature data measured by the Turkish State Meteorological Service between 2000 and 2006 at the Kütahya, Manisa, Uşak, Afyonkarahisar, İzmir, Aydın, Denizli and Muǧla meteorological stations at depths of 5, 10, 20, 50 and 100 cm below the surface. The monthly air temperature, depth and month of the year were used in the input layer of the artificial neural network model, while the monthly soil temperature was the target data in the output layer. A prediction model was developed using the MATLAB program and the results derived from the model were compared with measured values. The mean absolute error (MAE) for the derived results from the different depths at all stations ranged from 0.32–0.82°C, while the corresponding range for the validation data set was 0.27–0.76°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

D:

Soil depth (cm)

F:

Sigmoid function

FFNN:

Feed forward neural network

GRNN:

Generalized regression neural networks

k:

The number of source nodes

LM:

The Levenberg Marquard

m:

Measured value

M:

Month of the year

MAE:

Mean absolute error

n:

Total number of data

p:

Predicted value

R:

Correlation coefficient

RBNN:

Radial basis neural networks

S:

Soil temperature (°C)

T:

Air temperature (°C)

TSMS:

The Turkish state meteorological service

U:

Summation function

X:

Inputs

X min :

Minimal value

X max :

Maximal value

X N :

Normalized value

X O :

Original value

W:

Weight

Y:

Output

\({\varphi}\) :

Activation function

\({\varphi(x)}\) :

Sigmoid logistic non-linear function

θ :

Threshold

References

  1. García-Suárez A.M., Butler C.J.: Soil temperatures at Armagh observatory, northern Ireland, from 1904 to 2002. Int. J. Climatol. 26, 1075–1089 (2006)

    Article  Google Scholar 

  2. Paul K.I., Polglase P.J., Smethurst P.J., O’Connell A.M., Carlyle C.J., Khanna P.K.: Soil temperature under forests: a simple model for predicting soil temperature under a range of forest types. Agric. For. Meteorol. 121, 167–182 (2004)

    Article  Google Scholar 

  3. Kang S., Kim S., Oh S., Lee D.: Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For. Ecol. Manag. 136, 173–184 (2000)

    Article  Google Scholar 

  4. Fan A.W., Liu W.: Simulation of the daily change of soil temperature under different conditions. Heat Transf. Asian Res. 32, 533–544 (2003)

    Article  Google Scholar 

  5. Mihalakakou G.: On estimating soil surface temperature profiles. Energy Build. 34, 251–259 (2002)

    Article  Google Scholar 

  6. Koçak K., Şaylan L., Eitzinger J.: Nonlinear prediction of near-surface temperature via univariate and multivariate time series embedding. Ecol. Model. 173, 1–7 (2004)

    Article  Google Scholar 

  7. Yılmaz T., Özbek A., Yılmaz A., Büyükalaca O.: Influence of upper layer properties on the ground temperature distribution. J. Therm. Sci. Technol. 29, 43–51 (2009)

    Google Scholar 

  8. Gao Z., Horton R., Wang L., Liu H., Wen J.: An improved force-restore method for soil temperature prediction. Eur. J. Soil Sci. 59, 972–981 (2008)

    Article  Google Scholar 

  9. George R.K.: Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Anal. 47, 1737–1748 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Enrique G., Braud I., Jean-Louis T., Michel V., Pierre B., Jean-Christophe C.: Modelling heat and water exchanges of fallow land covered with plant-residue mulch. Agric. For. Meteorol. 97, 151–169 (1999)

    Article  Google Scholar 

  11. Gao Z., Bian L., Hu Y., Wang L., Fan J.: Determination of soil temperature in an arid region. J. Arid Environ. 71, 157–168 (2007)

    Article  Google Scholar 

  12. Tenge A.J., Kagihura F.B.S., Lal R., Singh B.R.: Diurnal soil temperature fluctuations for different erosion classes of an oxisol at Mlingano. Tanzania. Soil Tillage Res. 49, 211–217 (1998)

    Article  Google Scholar 

  13. Prangnell J., McGowan G.: Soil temperature calculation for burial site analysis. Forensic Sci. Int. 191, 104–109 (2009)

    Article  Google Scholar 

  14. Droulia F., Lykoudis S., Tsiros I., Alvertos N., Akylas E., Garofalakis I.: Ground temperature estimations using simplified analytical and semi-empirical approaches. Sol. Energy 83, 211–219 (2009)

    Article  Google Scholar 

  15. Hillel D.: Introduction to soil physics. Academic Press, San Diego (1982)

    Google Scholar 

  16. Cano, A.; Saleh, K.; Wigneron, J.P.; Antolín, C.; Balling, J.E.; Kerr, Y.H.; Kruszewski, A.; Millán-Scheiding, C.; Schmidl Søbjærg, S.; Skou, N.; López-Baeza, E.: The SMOS Mediterranean Ecosystem L-Band characterisation EXperiment (MELBEX-I) over natural shrubs. Remote Sens. Environ. 114, 844–853 (2010)

  17. Firat M., Gungor M.: Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Adv. Eng. Softw. 40, 731–737 (2009)

    Article  MATH  Google Scholar 

  18. Maqsood I., Khan M.R., Huang G.H., Abdalla R.: Application of soft computing models to hourly weather analysis in southern Saskatchewan. Canada. Eng. Appl. Artif. Intell. 18, 115–125 (2005)

    Article  Google Scholar 

  19. Tayfur G.: Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47, 879–892 (2002)

    Article  Google Scholar 

  20. Kisi O.: River flow modeling using artificial neural networks. J. Hydrol. Eng. 9, 60–63 (2004)

    Article  Google Scholar 

  21. Sözen, A.; Arcaklıoǧlu, E.; Özalp, M.; Çaǧlar, N.: Forecasting based on neural network approach of solar potential in Turkey. Renew. Energy 30, 1075–1090 (2005)

    Google Scholar 

  22. Kalogirou S.A.: Artificial neural networks in renewable energy systems applications: a review. Renew. Sustain. Energy Rev. 5, 373–401 (2001)

    Article  Google Scholar 

  23. Haykin S.: Neural networks, a comprehensive foundation. Prentice-Hall, New Jersey (1994)

    MATH  Google Scholar 

  24. Kisi O., Yuksel I., Dogan E.: Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques. Hydrol. Sci. J. 53, 1270–1285 (2008)

    Article  Google Scholar 

  25. Krauss G., Kindangen J.I., Depecker P.: Using artificial neural networks to predict interior velocity coefficients. Build. Environ. 32, 295–303 (1997)

    Article  Google Scholar 

  26. Bilgili M., Sahin B.: Prediction of long-term monthly temperature and rainfall in Turkey. Energy Sources 32, 60–71 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Bilgili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilgili, M. Regional Assessment of Monthly Soil Temperatures in the Aegean Region of Turkey. Arab J Sci Eng 37, 765–775 (2012). https://doi.org/10.1007/s13369-012-0199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0199-0

Keywords

Navigation