Skip to main content
Log in

Month-long simulations of gravity waves over North America and North Atlantic in comparison with satellite observations

  • Published:
Acta Meteorologica Sinica Aims and scope Submit manuscript

Abstract

Mesoscale simulations of gravity waves in the upper troposphere and lower stratosphere over North America and North Atlantic Ocean in January 2003 are compared with satellite radiance measurements from the Advanced Microwave Sounding Unit-A (AMSU-A). Four regions of strong gravity wave (GW) activities are found in the model simulations and the AMSU-A observations: the northwestern Atlantic, the U.S. Rockies, the Appalachians, and Greenland. GWs over the northwestern Atlantic Ocean are associated with the midlatitude baroclinic jet-front system, while the other three regions are apparently related to high topography. Model simulations are further used to analyze momentum fluxes in the zonal and meridional directions. It is found that strong westward momentum fluxes are prevalent over these regions over the whole period. Despite qualitative agreement between model simulations and satellite measurements, sensitivity experiments demonstrate that the simulated GWs are sensitive to the model spin-up time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M., M. Geller, C. McLandress, et al., 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravitywave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136(650), 1103–1124.

    Google Scholar 

  • Allen, S. J., and R. A. Vincent, 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100(D1), 1327–1350.

    Article  Google Scholar 

  • Bei, N. F., and F. Q. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart. J. Roy. Meteor. Soc., 133(622), 83–99.

    Article  Google Scholar 

  • Blumen, W., and R. S. Wu, 1995: Geostrophic adjustment: Frontogenesis and energy conversion. J. Phys. Oceanogr., 25(3), 428–438.

    Article  Google Scholar 

  • Fritts, D. C., and Z. G. Luo, 1992: Gravity wave excitation by geostrophic adjustment of the jet stream. Part I: Two-dimensional forcing. J. Atmos. Sci., 49(8), 681–697.

    Article  Google Scholar 

  • —, and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci., 49(2), 101–110.

    Article  Google Scholar 

  • —, and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003–1063.

    Article  Google Scholar 

  • Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Tech. Note TN-3981IA, National Center for Atmospheric Research, Boulder, CO, 125 pp.

    Google Scholar 

  • Jiang, J. H., S. D. Eckermann, D. L. Wu, et al., 2005: Seasonal variation of gravity wave sources from satellite observation. Adv. Space Res., 35(11), 1925–1932.

    Article  Google Scholar 

  • Kim, S.-Y., H.-Y. Chun, and J.-J. Baik, 2005: A numerical study of gravity waves induced by convection associated with Typhoon Rusa. Geophys. Res. Lett., 32(24), L24816, doi: 10.1029/2005GL024662.

    Article  Google Scholar 

  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravitywave drag parametrization for numerical climate and weather prediction models. Atmos. Ocean, 41(1), 65–98.

    Article  Google Scholar 

  • Kuester, M. A., M. J. Alexander, and E. A. Ray, 2008: A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci., 65(10), 3231–3246.

    Article  Google Scholar 

  • Plougonven, R., and F. Q. Zhang, 2013: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., in review.

    Google Scholar 

  • Powers, J. G., and R. J. Reed, 1993: Numerical simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Mon. Wea. Rev., 121(8), 2285–2308.

    Article  Google Scholar 

  • Sato, K., T. Kumakura, and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56(8), 1005–1018.

    Article  Google Scholar 

  • Shutts, G. J., and S. B. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137(655), 303–317.

    Article  Google Scholar 

  • Tsuda, T., M. Nishida, C. Rocken, et al., 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105(D6), 7257–7274.

    Article  Google Scholar 

  • Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115(3), 721–729.

    Article  Google Scholar 

  • Wang, L., and M. A. Geller, 2003: Morphology of gravitywave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J. Geophys. Res., 108(D16), 4489–4496.

    Article  Google Scholar 

  • Wang, S. G., and F. Q. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jetfront systems. Mon. Wea. Rev., 135(2), 670–688.

    Article  Google Scholar 

  • Wu, D. L., 2004: Mesoscale gravity wave variances from AMSU-A radiances. Geophys. Res. Lett., 31(12), L12114, doi: 10.1029/2004GL019562.

    Article  Google Scholar 

  • —, and F. Q. Zhang, 2004: A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model. J. Geophys. Res., 109, D22104, doi: 10.1029/2004JD005090.

    Article  Google Scholar 

  • Zhang, F. Q., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61(4), 440–457.

    Article  Google Scholar 

  • —, C. A. Davis, M. L. Kaplan, et al., 2001: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United States. Quart. J. Roy. Meteor. Soc., 127(577), 2209–2245.

    Article  Google Scholar 

  • —, S. E. Koch, and M. L. Kaplan, 2003: Numerical simulations of a large-amplitude mesoscale gravity wave event. Meteor. Atmos. Phys., 84(3–4), 199–216.

    Google Scholar 

  • —, N. F. Bei, R. Rotunno, et al., 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64(10), 3579–3594.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqing Zhang  (张福青).

Additional information

Supported by the United States NSF Grants ATM-0618662 and ATM-0904635.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Zhang, M., Wei, J. et al. Month-long simulations of gravity waves over North America and North Atlantic in comparison with satellite observations. Acta Meteorol Sin 27, 446–454 (2013). https://doi.org/10.1007/s13351-013-0301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-013-0301-x

Key words

Navigation