Skip to main content
Log in

A version of Kalton’s theorem for the space of regular operators

  • Published:
Collectanea Mathematica Aims and scope Submit manuscript

Abstract

In this note we extend some recent results in the space of regular operators [appeared in Bu and Wong (Indag Math 23:199–213, 2012), Bu et al. (Collect Math 62:131–137, 2011), and Li et al. (Taiwan J Math 16:207–215, 2012)]. Our main result is the following Banach lattice version of a classical result of Kalton: Let \(E\) be an atomic Banach lattice with an order continuous norm and \(F\) a Banach lattice. Then the following are equivalent: (i) \(L^r(E,F)\) contains no copy of \(\ell _\infty \), (ii) \(L^r(E,F)\) contains no copy of \(c_0\), (iii) \(K^r(E,F)\) contains no copy of \(c_0\), (iv) \(K^r(E,F)\) is a (projection) band in \(L^r(E,F)\), (v) \(K^r(E,F)=L^r(E,F)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albiac, F., Kalton, N.J.: Topics in Banach space theory, Graduate Texts in Mathematics, vol. 233. Springer, New York (2006)

    Google Scholar 

  2. Aliprantis, C.D., Burkinshaw, O.: Positive Operators. Springer, Dordrecht (1985)

    MATH  Google Scholar 

  3. Aqzzouz, B., Elbour, A., Wickstead, A.W.: Positive almost Dunford–Pettis operators and their duality. Positivity 15(2), 185–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bu, Q., Buskes, G., Popov, A.I., Tcaciuc, A., Troitsky, V.G.: The 2-concavification of a Banach lattice equals the diagonal of the Fremlin tensor square. Positivity 17(2), 283–298 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bu, Q., Wong, N.-C.: Some geometric properties inherited by the positive tensor products of atomic Banach latices. Indag. Math. 23, 199–213 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bu, Q., Li, Y., Xue, X.: Some properties of the space of regular operators on atomic Banach lattices. Collect. Math. 62(2), 131–137 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bu, Q., Buskes, G.: Schauder decompositions and the Fremlin projective tensor product of Banach lattices. J. Math. Anal. Appl. 355(1), 335–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bu, Q., Michelle, C., Ji, D.: Reflexivity and the Grothendieck property for positive tensor products of Banach lattices. II. Quaest. Math. 32(3), 339–350 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bu, Q., Buskes, G., Lai, W.-K.: The Radon–Nikodym property for tensor products of Banach lattices. II. Positivity 12(1), 45–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z.L.: On the order continuity of the regular norm. Positivity IV-theory and applications, pp. 45–51. Tech. Univ. Dresden, Dresden (2006)

  11. Chen, Z.L., Wickstead, A.W.: The order properties of r-compact operators on Banach lattices. Acta Math. Sin. (Engl. Ser.) 23(3), 457–466 (2007)

    Google Scholar 

  12. Chen, Z.L., Wickstead, A.W.: Some applications of Rademacher sequences in Banach lattices. Positivity 2(2), 171–191 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diestel, J., Uhl, Jr. J.J.: Vector Measures, vol. 15. American Mathematical Society Mathematical Surveys, Providence (1977)

  14. Feder, M.: On subspaces of spaces with an unconditional basis and spaces of operators. Ill. J. Math. 24(2), 196–205 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Fremlin, D.H.: Tensor products of Banach lattices. Math. Ann. 211, 87–106 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kalton, N.J.: Space of compact operators. Math. Ann. 208, 267–278 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Y., Ji, D., Bu, Q.: Copies of \(c_0\) and \(l_\infty \) into a regular operator space. Taiwan. J. Math. 16(1), 207–215 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Megginson, R.E.: An Introduction to Banach Space Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  19. Meyer-Nieberg, P.: Banach Lattices. Universitext, Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  20. Polyrakis, I.A., Xanthos, F.: Cone characterization of Grothendieck spaces and Banach spaces containing \(c_0\). Positivity 15, 677–693 (2011)

    Google Scholar 

  21. Schaefer, H.H.: Aspects of Banach lattices. Studies in functional analysis, MAA Stud. Math., vol. 21. Math. Assoc. America, Washington, D.C., pp. 158–221 (1980)

  22. Schep, A.R.: Cone isomorphisms and almost surjective operators. Indag. Math. (2014, to appear)

  23. Wickstead, A.W.: Regular operators between Banach lattices. Positivity, Trends Math., Birkhauser, Basel, pp. 255–279 (2007)

  24. Wickstead, A.W.: Converses for the Dodds–Fremlin and Kalton–Saab theorems. Math. Proc. Camb. Philos. Soc. 120(1), 175–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wnuk, W.: On the dual positive Schur property in Banach lattices. Positivity (2014, to appear)

Download references

Acknowledgments

The results were presented at the working seminar of the functional analysis group of the University of Alberta and I would like to thank the participants for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foivos Xanthos.

Additional information

This research was supported by NSERC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xanthos, F. A version of Kalton’s theorem for the space of regular operators. Collect. Math. 66, 55–62 (2015). https://doi.org/10.1007/s13348-013-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13348-013-0101-8

Keywords

Mathematics subject classification (1991)

Navigation