Skip to main content

Advertisement

Log in

Fire as a Soil-Forming Factor

  • Perspective
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

In the span of a human generation, fire can, in theory, impact all the land covered by vegetation. Its occurrence has many important direct and indirect effects on soil, some of which are long-lasting or even permanent. As a consequence, fire must be considered a soil-forming factor, on par with the others traditionally recognized, namely: parent material, topography, time, climate, living beings not endowed with the power of reason, and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amundson, R. 2006. The state factor theory of soil formation. In Soils: Basic concepts and future challenges, ed. G. Certini, and R. Scalenghe, 310 pp. Cambridge: Cambridge University Press.

  • Amundson, R., and H. Jenny. 1991. The place of humans in the state factor theory of ecosystems and their soils. Soil Science 151: 99–109.

    Article  Google Scholar 

  • Bond, W.J., F.I. Woodward, and G.F. Midgley. 2005. The global distribution of ecosystems in a world without fire. New Phytologist 165: 525–538.

    Article  CAS  Google Scholar 

  • Bowman, D.M.J.S., J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson, M.A. Cochrane, C.M. D’Antonio, R.S. DeFries, et al. 2009. Fire in the Earth system. Science 324: 481–484.

    Article  CAS  Google Scholar 

  • Campbell, A.S., U. Schwertmann, and P.A. Campbell. 1997. Formation of cubic phases on heating ferrihydrite. Clay Minerals 32: 615–622.

    Article  CAS  Google Scholar 

  • Certini, G. 2005. Effects of fire on properties of forest soils: A review. Oecologia 143: 1–10.

    Article  Google Scholar 

  • Certini, G., and F.C. Ugolini. 2013. An updated, expanded, universal definition of soil. Geoderma 192: 378–379.

    Article  Google Scholar 

  • Certini, G., R. Scalenghe, and R. Amundson. 2009. A view of extraterrestrial soils. European Journal of Soil Science 60: 1078–1092.

    Article  CAS  Google Scholar 

  • Certini, G., C. Nocentini, H. Knicker, P. Arfaioli, and C. Rumpel. 2011. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 167–168: 148–155.

    Article  Google Scholar 

  • Clement, B.M., J. Javier, J.P. Sah, and M.S. Ross. 2011. The effects of wildfires on the magnetic properties of soils in the Everglades. Earth Surface Processes and Landforms 36: 460–466.

    Article  Google Scholar 

  • Giglio, L., J.T. Randerson, G.R. van der Werf, P.S. Kasibhatla, G.J. Collatz, D.C. Morton, and R.S. DeFries. 2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7: 1171–1186.

    Article  Google Scholar 

  • González-Pérez, J.A., F.J. González-Vila, G. Almendros, and H. Knicker. 2004. The effect of fire on soil organic matter—A review. Environment International 30: 855–870.

    Article  Google Scholar 

  • Jenny, H. 1941. Factors of soil formation: A system of quantitative pedology. New York: McGraw-Hill.

    Google Scholar 

  • Johnson, D.L. 1998. A universal definition of soil. Quaternary International 51–52: 6–7.

    Article  Google Scholar 

  • Knicker, H. 2011. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quaternary International 243: 251–263.

    Article  Google Scholar 

  • Knicker, H., A. Hilscher, F.J. González-Vila, and G. Almendros. 2008. A new conceptual model for the structural properties of char produced during vegetation fires. Organic Geochemistry 39: 935–939.

    Article  CAS  Google Scholar 

  • Loveland, T.R., B.C. Reed, J.F. Brown, D.O. Ohlen, Z. Zhu, L. Yang, and J.W. Merchant. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303–1330.

    Article  Google Scholar 

  • Mack, M.C., M.S. Bret-Harte, T.N. Hollingsworth, R.R. Jandt, E.A.G. Schuur, G.R. Shaver, and D.L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475: 489–492.

    Article  CAS  Google Scholar 

  • Navarro-González, R., F.A. Rainey, P. Molina, D.R. Bagaley, B.J. Hollen, J. de la Rosa, A.M. Small, R.C. Quinn, et al. 2003. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302: 1018–1021.

    Article  Google Scholar 

  • Neary, D.G., K.C. Ryan, and L.F. DeBano, ed. 2005. Wildland fire in ecosystems: Effects of fire on soil and water. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42-volume 4, Ogden, UT, 250 pp.

  • Pausas, J.G., and J.E. Keeley. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593–601.

    Article  Google Scholar 

  • Prentice, I.C. 2010. The burning issue. Science 330: 1636–1637.

    Article  CAS  Google Scholar 

  • Robin, V., B. Talon, and O. Nelle. 2013. Pedoanthracological contribution to forest naturalness assessment. Quaternary International 289: 5–15.

    Article  Google Scholar 

  • Schmidt, M.W.I., and A.G. Noack. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 14: 777–793.

    Article  CAS  Google Scholar 

  • Shakesby, R.A. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105: 71–100.

    Article  Google Scholar 

  • Shakesby, R.A., and S.H. Doerr. 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74: 269–307.

    Article  Google Scholar 

  • Shanhun, F.L., P.C. Almond, T.J. Clough, and C.M.S. Smith. 2012. Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biology & Biochemistry 53: 99–111.

    Article  CAS  Google Scholar 

  • Tansey, K., J.M. Grégoire, P. Defourny, R. Leigh, J.F. Pekel, E. van Bogaert, and E. Bartholomé. 2008. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophysical Research Letters 35: art. No. L01401.

  • Titiz, B., and R.L. Sanford Jr. 2007. Soil charcoal in old-growth rain forests from sea level to the continental divide. Biotropica 39: 673–682.

    Article  Google Scholar 

  • Ugolini, F.C., and J.G. Bockheim. 2008. Antarctic soils and soil formation in a changing environment: A review. Geoderma 144: 1–8.

    Article  CAS  Google Scholar 

  • Ulery, A.L., R.C. Graham, and L.H. Bowen. 1996. Forest fire effects on soil phyllosilicates in California. Soil Science Society of America Journal 60: 309–315.

    Article  CAS  Google Scholar 

  • Wardle, D.A., M.-C. Nilsson, and O. Zackrisson. 2008. Fire-derived charcoal causes loss of forest humus. Science 320: 629.

    Article  CAS  Google Scholar 

  • Yusiharni, E., and R.J. Gilkes. 2012. Changes in the mineralogy and chemistry of a lateritic soil due to a bushfire at Wundowie, Darling Range, Western Australia. Geoderma 191: 140–150.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Professor Fiorenzo C. Ugolini and two anonymous reviewers for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Certini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Certini, G. Fire as a Soil-Forming Factor. AMBIO 43, 191–195 (2014). https://doi.org/10.1007/s13280-013-0418-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-013-0418-2

Keywords

Navigation