Skip to main content

Advertisement

Log in

Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo

  • Original Article
  • Published:
Tumor Biology

Abstract

A novel porphyrin derivative, 5, 10, 15, 20-tetrakis (5-morpholinopentyl)-21H, 23H-Porphin (MPP, 4) and its photophysical characteristics, therapeutic efficacy of photodynamic therapy (PDT) in vitro and in vivo, tumor selectivity, and clearance from normal tissues were investigated here. MPP has strong absorption at relatively long wavelength (λmax = 648 nm, molar absorption coefficient ε ∼ 17,200 M−1cm−1) and can emit strong fluorescence at 653 and 718 nm. When administered to the animal tumor models by tail vein injection, MPP was capable of accumulating in the tumor site, as examined in vivo with the fluorescence signal of MPP. By the combination of MPP and a 650-nm laser irradiation, the viability of T24 cells could decrease by 4.37 %, and inhibition rate of T24 tumor could increase up to 91.21 % compared with control group, demonstrating the potential of MPP as an effective photosensitizer in PDT for tumor treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MPP 5:

10, 15, 20-tetrakis (5-morpholinopentyl)-21H, 23H-Porphin

PDT:

Photodynamic therapy

ros:

Reactive oxygen species

O2 :

Singlet oxygen

DPBF:

1, 3-diphenylisobenzofuran

DMSO:

Dimethyl sulfoxide

DMF:

N, N-dimethylformamide

PBS:

Phosphate buffered saline

T24:

Cell human bladder cancer cell line

FBS:

Fetal bovine serum

H&E:

Hematoxylin-eosin

MTT:

3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide

References

  1. Dougherty TJ. Photodynamic therapy: Part II. Semin Surg Oncol. 1995;11(5):333–4.

    Article  CAS  PubMed  Google Scholar 

  2. Triesscheijn M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in oncology. Oncologist. 2006;11(9):1034–44. doi:10.1634/theoncologist.11-9-1034.

    Article  CAS  PubMed  Google Scholar 

  3. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7. doi:10.1038/nrc1071.

    Article  CAS  PubMed  Google Scholar 

  4. Huang Z. A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat. 2005;4(3):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brundish DE, Love WG. Photodynamic therapy comes of age. IDrugs. 2000;3(12):1487–508.

    CAS  PubMed  Google Scholar 

  6. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev. 2010;110(5):2795–838. doi:10.1021/cr900300p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endocrinol. 2013;46(1):24–9. doi:10.5946/ce.2013.46.1.24.

    Google Scholar 

  8. MacCormack MA. Photodynamic therapy. Adv Dermatol. 2006;22:219–58.

    Article  PubMed  Google Scholar 

  9. Wilson BC, Patterson MS. The physics, biophysics and technology of photodynamic therapy. Phys Med Biol. 2008;53(9):R61–R109. doi:10.1088/0031-9155/53/9/R01.

    Article  CAS  PubMed  Google Scholar 

  10. Kempa M, Kozub P, Kimball J, Rojkiewicz M, Kus P, Gryczynski Z, et al. Physicochemical properties of potential porphyrin photosensitizers for photodynamic therapy. Spectrochim Acta A Mol Biomol Spectrosc. 2015;146:249–54. doi:10.1016/j.saa.2015.03.076.

    Article  CAS  PubMed  Google Scholar 

  11. Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci. 2009;24(2):259–68. doi:10.1007/s10103-008-0539-1.

    Article  CAS  PubMed  Google Scholar 

  12. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 2004;1(4):279–93. doi:10.1016/S1572-1000(05)00007-4.

    Article  CAS  Google Scholar 

  13. Detty MR, Gibson SL, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem. 2004;47(16):3897–915. doi:10.1021/jm040074b.

    Article  CAS  PubMed  Google Scholar 

  14. Moan J. Porphyrin photosensitization and phototherapy. Photochem Photobiol. 1986;43(6):681–90.

    Article  CAS  PubMed  Google Scholar 

  15. Friedberg JS, Mick R, Stevenson J, Metz J, Zhu T, Buyske J, et al. A phase I study of Foscan-mediated photodynamic therapy and surgery in patients with mesothelioma. Ann Thorac Surg. 2003;75(3):952–9.

    Article  PubMed  Google Scholar 

  16. Javaid B, Watt P, Krasner N. Photodynamic therapy (PDT) for oesophageal dysplasia and early carcinoma with mTHPC (m-tetrahydroxyphenyl chlorin): a preliminary study. Lasers Med Sci. 2002;17(1):51–6. doi:10.1007/s101030200009.

    Article  CAS  PubMed  Google Scholar 

  17. Kato H, Furukawa K, Sato M, Okunaka T, Kusunoki Y, Kawahara M, et al. Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer. 2003;42(1):103–11.

    Article  PubMed  Google Scholar 

  18. Taber SW, Fingar VH, Coots CT, Wieman TJ. Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a phase I clinical study. Clin Cancer Res. 1998;4(11):2741–6.

    CAS  PubMed  Google Scholar 

  19. Lee LK, Whitehurst C, Pantelides ML, Moore JV. In situ comparison of 665 nm and 633 nm wavelength light penetration in the human prostate gland. Photochem Photobiol. 1995;62(5):882–6.

    Article  CAS  PubMed  Google Scholar 

  20. Selman SH, Fitkin DL, Keck RW, Morgan AR, Doiron DR. Treatment of the transplantable FANFT induced bladder tumors with the purpurin SnET2 and red light emitted by a pulsed frequency doubled Nd:YAG laser. J Laser Appl. 1991;3(2):45–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ivy SP, Blatner G, Cheson BD. Clinical trials referral resource. Clinical trials with gadolinium-texaphyrin and lutetium-texaphyrin. Oncology. 1999;13(5):671. 4–6.

    CAS  PubMed  Google Scholar 

  22. Dimofte A, Zhu TC, Hahn SM, Lustig RA. In vivo light dosimetry for motexafin lutetium-mediated PDT of recurrent breast cancer. Lasers Surg Med. 2002;31(5):305–12. doi:10.1002/lsm.10115.

    Article  PubMed  Google Scholar 

  23. Hsi RA, Kapatkin A, Strandberg J, Zhu T, Vulcan T, Solonenko M, et al. Photodynamic therapy in the canine prostate using motexafin lutetium. Clin Cancer Res. 2001;7(3):651–60.

    CAS  PubMed  Google Scholar 

  24. Howard JA. The new wilderness. J Am Coll Dent. 1976;43(1):15–22. 32.

    CAS  PubMed  Google Scholar 

  25. Karagianis G, Hill JS, Stylli SS, Kaye AH, Varadaxis NJ, Reiss JA, et al. Evaluation of porphyrin C analogues for photodynamic therapy of cerebral glioma. Br J Cancer. 1996;73(4):514–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen JJ, Hong G, Gao LJ, Liu TJ, Cao WJ. In vitro and in vivo antitumor activity of a novel porphyrin-based photosensitizer for photodynamic therapy. J Cancer Res Clin Oncol. 2015. doi:10.1007/s00432-015-1918-1.

    Google Scholar 

  27. Dimitrova DZ, Kubat P, Dimitrov S, Belokonski E, Bogoeva V. Photophysical characterisation and studies of the effect of palladium(II) 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin on isometric contraction of isolated human mesenteric artery: good news for photodynamic therapy. Photodiagn Photodyn Ther. 2014;11(3):391–9. doi:10.1016/j.pdpdt.2014.06.002.

    Article  CAS  Google Scholar 

  28. Dabrowski JM, Krzykawska M, Arnaut LG, Pereira MM, Monteiro CJ, Simoes S, et al. Tissue uptake study and photodynamic therapy of melanoma-bearing mice with a nontoxic, effective chlorin. ChemMedChem. 2011;6(9):1715–26. doi:10.1002/cmdc.201100186.

    Article  CAS  PubMed  Google Scholar 

  29. Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70(4):391–475.

    Article  CAS  PubMed  Google Scholar 

  30. Stockert JC, Canete M, Juarranz A, Villanueva A, Horobin RW, Borrell JI, et al. Porphycenes: facts and prospects in photodynamic therapy of cancer. Curr Med Chem. 2007;14(9):997–1026.

    Article  CAS  PubMed  Google Scholar 

  31. Oleinick NL, Morris RL, Belichenko T. The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photoch Photobio Sci. 2002;1(1):1–21. doi:10.1039/B108586g.

    Article  CAS  Google Scholar 

  32. Krammer B. Vascular effects of photodynamic therapy. Anticancer Res. 2001;21(6B):4271–7.

    CAS  PubMed  Google Scholar 

  33. Castano AP, Mroz P, Hamblin MR. Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer. 2006;6(7):535–45. doi:10.1038/nrc1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation (No. 21372042, 21402236, 81301878), Foundation of Shanghai government (No.14431906200, 14140903500, 13431900700, 13430722300, 13ZR1441000, 13ZR1440900, 14ZR1439800, 14ZR1439900, 15ZR1439900, 15XD1523400, 14SJGGYY08, 201370), International Cooperation Foundation of China and Croatia (6–11) and Foundation of Yiwu Science and Technology Bureau (No. 2012-G3-02, 2013-G3-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Long Chen.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LJ., Yan, YJ., Liao, PY. et al. Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo. Tumor Biol. 37, 6923–6933 (2016). https://doi.org/10.1007/s13277-015-4576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4576-7

Keywords

Navigation