Skip to main content

Advertisement

Log in

Expression QTL-based analyses reveal the mechanisms underlying colorectal cancer predisposition

  • Research Article
  • Published:
Tumor Biology

Abstract

Genome-wide association studies have identified many risk loci associated with colorectal cancer. Strategies integrating biological data sets with GWAS results will provide insights into the roles of risk single-nucleotide polymorphisms. We performed expression quantitative trait locus-based analyses using the information provided in The Cancer Genome Atlas. Analysis of the cis-expression quantitative trait loci (eQTLs) of 18 previously reported colorectal cancer risk loci resulted in the discovery of five variants that were significantly associated with gene expressions. Analysis of the trans-eQTLs identified three risk loci that affect the expression levels of a neighboring transcription factor, MYC. These findings provide a more comprehensive picture of gene expression determinants in colorectal cancer and insights into the underlying biology of risk loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Reference

  1. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93(5):779–97. doi:10.1016/j.ajhg.2013.10.012.

    Article  CAS  Google Scholar 

  2. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42(Database issue):D1001–6. doi:10.1093/nar/gkt1229.

    Article  CAS  Google Scholar 

  3. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, et al. Genetic analysis of genome-wide variation in human gene expression. Nature. 2004;430(7001):743–7. doi:10.1038/nature02797.

    Article  CAS  Google Scholar 

  4. Lappalainen T, Sammeth M, Friedlander MR, Hoen PA, Monlong J, Rivas MA, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501(7468):506–11. doi:10.1038/nature12531.

    Article  CAS  Google Scholar 

  5. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. doi:10.1126/science.1222794.

    Article  CAS  Google Scholar 

  6. Fraser HB, Xie X. Common polymorphic transcript variation in human disease. Genome Res. 2009;19(4):567–75. doi:10.1101/gr.083477.108.

    Article  CAS  Google Scholar 

  7. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6(4):e1000888. doi:10.1371/journal.pgen.1000888.

    Article  Google Scholar 

  8. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, Attar-Cohen H, et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science. 2009;325(5945):1246–50. doi:10.1126/science.1174148.

    Article  CAS  Google Scholar 

  9. The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi:10.1038/nature11252.

    Article  Google Scholar 

  10. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PI. SNAP: a Web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938–9. doi:10.1093/bioinformatics/btn564.

    Article  CAS  Google Scholar 

  11. Mason JM, Arndt KM. Coiled coil domains: stability, specificity, and biological implications. Chembiochem: Eur J Chem Biol. 2004;5(2):170–6. doi:10.1002/cbic.200300781.

    Article  CAS  Google Scholar 

  12. Fan C, Dong L, Zhu N, Xiong Y, Zhang J, Wang L, et al. Isolation of siRNA target by biotinylated siRNA reveals that human CCDC12 promotes early erythroid differentiation. Leuk Res. 2012;36(6):779–83. doi:10.1016/j.leukres.2011.12.017.

    Article  CAS  Google Scholar 

  13. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41(8):882–4. doi:10.1038/ng.403.

    Article  CAS  Google Scholar 

  14. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41(8):885–90. doi:10.1038/ng.406.

    Article  CAS  Google Scholar 

  15. Sur IK, Hallikas O, Vaharautio A, Yan J, Turunen M, Enge M, et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science. 2012;338(6112):1360–3. doi:10.1126/science.1228606.

    Article  CAS  Google Scholar 

  16. Li Q, Seo JH, Stranger B, McKenna A, Pe'er I, Laframboise T, et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell. 2013;152(3):633–41. doi:10.1016/j.cell.2012.12.034.

    Article  CAS  Google Scholar 

  17. Brown CD, Mangravite LM, Engelhardt BE. Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs. PLoS Genet. 2013;9(8):e1003649. doi:10.1371/journal.pgen.1003649.

    Article  CAS  Google Scholar 

  18. Loo LW CI, Tiirikainen M, Lum-Jones A, Seifried A, Dunklee LM, Church JM, et al. cis-Expression QTL analysis of established colorectal cancer risk variants in colon tumors and adjacent normal tissue. PloS one. 2012;7(2). doi:10.1371/journal.pone.0030477.t001.

Download references

Acknowledgment

The authors thank Qinghua Cui and Chengxiang Qiu for the assistance on statistical analysis.

Funding source

This study was supported by the National Natural Science Foundation of China (item no. 81372291) and (item no. 81372290).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingjiang Ye or Shan Wang.

Additional information

Jizhun zhang and Jiang Kewei own equal first authorship.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Summary of 50 colorectal cancer GWAS risk alleles obtained from the National Human Genome Research Institute (XLS 38 kb)

Table S2

Clinical and pathologic data of 146 patients from whom both colorectal tumor expression profiles and matched germline genotype data were available (DOCX 16.3 kb)

Table S3

From the 18 risk SNP loci, we obtained 191 unique SNP gene pairs (XLSX 11.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Jiang, K., Shen, Z. et al. Expression QTL-based analyses reveal the mechanisms underlying colorectal cancer predisposition. Tumor Biol. 35, 12607–12611 (2014). https://doi.org/10.1007/s13277-014-2583-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2583-8

Keywords

Navigation