Skip to main content
Log in

Acute Biocompatibility of X-ray Visible Bioabsorbable Bone Plate Coated with β-Tricalcium Phosphate and Poly(lactic-co-glycolic acid)

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

To allow X-ray visibility, we coated a bioabsorbable bone plate in clinical use (PLT-1031, Inion, Finland) with a layer made of a composite of beta-tricalcium phosphate (β-TCP) and poly(lactic-co-glycolic acid) (PLGA) (i.e., β-TCP/PLGA plate) and assessed its in vivo acute biocompatibility for 4 months. For this, we fixed an intact Inion plate and β-TCP/PLGA plate on the left and right humeri of a New Zealand White rabbit, respectively. According to the X-ray imaging, the β-TCP/PLGA plate was observable for 2 weeks after the implantation while the intact plate was not visible during the whole tested period. To evaluate the biocompatibility of the plate, we performed a histological analysis with hematoxylin and eosin (H&E) staining on the tissues obtained at scheduled times. After being tested for 4 months, the overall biocompatibility of the β-TCP/PLGA plate was similar to that of the intact Inion plate and there was also no significant difference in bone repair process between the two plates. On the 5 day after the implantation, both plates exhibited a similar state of early reparative tissue reaction, showing tissue necrosis, abscess formation, and neutrophilic infiltration. In the 2 weeks, inflammation and granulation tissue formation around the plate extended to the skeletal muscle and fat tissue. This gradually decreased through the end of the experiment with only a few foreign body giant cells and macrophages remaining in the fibrotic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Lee and J. H. Park, Arch. Plast. Surg., 40, 330 (2013).

    Article  Google Scholar 

  2. D. P. Mukherjee and W. S. Pietrzak, J. Craniofac. Surg., 22, 679 (2011).

    Article  Google Scholar 

  3. S. Li, J. Biomed. Mater. Res., 48, 342 (1999).

    Article  CAS  Google Scholar 

  4. B. L. Eppley, A. M. Sadove, and R. J. Havlik, Plast. Reconstr. Surg., 100, 1 (1997).

    Article  CAS  Google Scholar 

  5. V. Bhatt, P. Chhabra, and M. S. Dover, J. Oral Maxillofac. Surg., 63, 756 (2005).

    Article  Google Scholar 

  6. C. Shasteen, S. M. Kwon, K. Y. Park, S. Y. Jung, S. H. Lee, C. G. Park, M. H. Kim, S. Kim, W. C. Son, T. H. Choi, and Y. B. Choy, J. Biomed. Mater. Res. Part B, 101, 320 (2013).

    Article  Google Scholar 

  7. G. Daculsi, Biomaterials, 19, 1473 (1998).

    Article  CAS  Google Scholar 

  8. J. Wiltfang, H. A. Merten, K. A. Schlegel, S. Schultze-Mosgau, F. R. Kloss, S. Rupprecht, and P. Kessler, J. Biomed. Mater. Res., 63, 115 (2002).

    Article  CAS  Google Scholar 

  9. J. M. Anderson and M. S. Shive, Adv. Drug Deliv. Rev., 28, 5 (1997).

    Article  CAS  Google Scholar 

  10. H. K. Makadia and S. J. Siegel, Polym. Rev., 3, 1377 (2011).

    CAS  Google Scholar 

  11. A. Göpferich, Biomaterials, 17, 103 (1996).

    Article  Google Scholar 

  12. H. J. Sung, C. Meredith, C. Johnson, and Z. S. Galis, Biomaterials, 25, 5735 (2004).

    Article  CAS  Google Scholar 

  13. C. M. Agrawal and R. B. Ray, J. Biomed. Mater. Res., 55, 141 (2001).

    Article  CAS  Google Scholar 

  14. N. B. Bauer, N. Brinke, C. Heiss, A. B. Skorupa, F. Peters, R. Schnettler, and A. Moritz, J. Biomed. Mater. Res. Part B: Appl. Biomater., 90, 767 (2009).

    Article  Google Scholar 

  15. J. Arnoldi, P. Henry, P. Procter, B. Robioneck, and A. Jönsson, J. Biomater. Sci. Polym. Ed., 23, 663 (2012).

    CAS  Google Scholar 

  16. International Organization for Standardization (ISO) Office, International Standard: Biological Evaluation of Medical Devices-Part 1: Evaluation and Testing, I S O, 2003, 10993-1: 1–14.

  17. S. Y. Choi, W. Hur, B. K. Kim, C. Shasteen, M. H. Kim, L. M. Choi, S. H. Lee, C. G. Park, M. Park, H. S. Min, S. Kim, T. H. Choi, and Y. B. Choy, J. Biomed. Mater. Res. Part B: Appl. Biomater., 103, 596 (2015).

    Article  Google Scholar 

  18. X. Fan, J. Chen, J. Ruan, Z. Zhou, and J. Zou, Polym. Plast. Technol. Eng., 48, 658 (2009).

    Article  Google Scholar 

  19. Y. Tanimoto, T. Hawakawa, and K. Nemoto, J. Biomed. Mater. Res. Part B: Appl. Biomater., 73, 157 (2005).

    Article  Google Scholar 

  20. N. T. Paragkumar, D. Edith, and J. L. Six, Appl. Surf. Sci., 253, 2758 (2006).

    Article  Google Scholar 

  21. Y. Ma, Y. Zheng, K. Liu, G. Tian, Y. Tian, L. Xu, F. Yan, L. Huang, and L. Mei, Nanoscale Res. Lett., 5, 1161 (2010).

    Article  CAS  Google Scholar 

  22. D. Liu, J. Zhuang, C. Shuai, and S. Peng, Biofabrication, 5, 1 (2013).

    Article  Google Scholar 

  23. G. Daculsi, Biomaterials, 19, 1473 (1998).

    Article  CAS  Google Scholar 

  24. H. Oonishi, L. L. Hench, J. Wilson, F. Sugihara, E. Tsuji, S. Kushitani, and H. Iwaki, J. Biomed. Mater. Res., 44, 31 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Bin Choy or Tae Hyun Choi.

Additional information

These authors contributed equally as first author to this work.

The image from this article is used as the cover image of the Volume 24, Issue 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, H.S., Hur, W., Lee, W.S. et al. Acute Biocompatibility of X-ray Visible Bioabsorbable Bone Plate Coated with β-Tricalcium Phosphate and Poly(lactic-co-glycolic acid). Macromol. Res. 24, 471–477 (2016). https://doi.org/10.1007/s13233-016-4064-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4064-y

Keywords

Navigation