Skip to main content
Log in

Fabrication of transparent silk fibroin film for the regeneration of corneal endothelial cells; preliminary study

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Dystrophies related to the corneal endothelium result in edema, loss of transparency, and finally, blindness. Currently, the only treatment of patients with these corneal endothelial dystrophies is transplantation. However, the limited availability of donor corneas is a main obstacle to transplanting healthy endothelia. In this study, we have chosen silk from the silkworm to make a substratum for corneal endothelial cells (CEnCs). This approach offers the possibility of overcoming the issue of limited supply of donor corneas. Two types of transparent silk films with different sericin contents have been prepared by boiling for 30 min and 1 h, respectively, as delivery vehicles for application on the corneal endothelium. The contents of sericin for high-sericin silk (HSS) and low-sericin silk (LSS) are 9.83% and 6.25%, respectively. Physical and chemical properties were analyzed by contact angle, transparency, tensile strength, FTIR, and DSC. Proliferation assay by MTT was conducted to confirm the viability of the CEnCs. These results demonstrate that the fabricated transparent silk films have sufficient physical and chemical properties as a possible carrier for CEnCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Joyce, Exp. Eye Res., 95, 16 (2012).

    Article  CAS  Google Scholar 

  2. T. Mimura, S. Yokoo, and S. Yamagami, J. Funct. Biomater., 3, 726 (2012).

    Article  CAS  Google Scholar 

  3. A. J. Aldave and B. Sonmez, Arch. Ophthalmol., 125, 177 (2007).

    Article  CAS  Google Scholar 

  4. A. J. Aldave and J. H. R. F. Frausto, Clin. Genet., (2013).

    Google Scholar 

  5. A. L. Sabater, A. Guarnieri, E. M. Espana, W. Li, F. Prósper, and J. Moreno-Montañés, Regen. Med., 8, 183 (2013).

    Article  CAS  Google Scholar 

  6. J. Zavala, G. R. L. Jaime, C. A. R. Barrientos, and J. Valdez- Garcia, Eye, 27, 579 (2013).

    Article  CAS  Google Scholar 

  7. N. C. Joyce, D. L. Harris, V. Markov, Z. Zhang, and B. Saitta, Mol. Vis., 18, 547 (2012).

    CAS  Google Scholar 

  8. J. H. Wang, C. H. Hung, and T. H. Young, Biomaterials, 27, 3441 (2006).

    Article  CAS  Google Scholar 

  9. C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007).

    Article  CAS  Google Scholar 

  10. T. H. Kim, J. H. Ko, S. J. Kim, and Y. H. Park, Int. J. Tissue Regen., 2, 1 (2011).

    CAS  Google Scholar 

  11. R. L. Moy, A. Lee, and A. Zalka, Am. Fam. Physician., 44, 2123 (1991).

    CAS  Google Scholar 

  12. N. Kato, S. Sato, A. Yamanaka, H. Yamada, N. Fuwa, and M. Nomura, Biosci. Biotechnol. Biochem., 62, 145 (1998).

    Article  CAS  Google Scholar 

  13. Z. Shao and F. Vollrath, Nature, 418, 741 (2002).

    Article  CAS  Google Scholar 

  14. B. Panilaitis, G. H. Altman, J. Chen, H. Jin, V. Karageorgiou, and D. L. Kaplan, Biomaterials, 24, 3079 (2003).

    Article  CAS  Google Scholar 

  15. T. Arai, G. Freddi, R. Innocenti, and M. Tsukada, J. Appl. Polym. Sci., 91, 2383 (2004).

    Article  CAS  Google Scholar 

  16. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 26, 147 (2005).

    Article  CAS  Google Scholar 

  17. A. Motta, L. Fambri, and C. Migliaresi, Macromol. Chem. Phys., 203, 1658 (2002).

    Article  CAS  Google Scholar 

  18. N. Minoura, M. Tsukada, and M. Nagura, Biomaterials, 11, 430 (1990).

    Article  CAS  Google Scholar 

  19. B. D. Lawrence, M. Cronin-Golomb, I. Georgakoudi, D. L. Kaplan, and F. G. Omenetto, Biomacromolecules, 9, 1214 (2008).

    Article  CAS  Google Scholar 

  20. M. Li, W. Tao, S. Kuga, and Y. Nishiyama, Polym. Adv. Technol., 14, 694 (2003).

    Article  CAS  Google Scholar 

  21. O. J. Lee, J. M. Lee, H. J. Jin, and C. H. Park, Int. J. Tissue Regen., 1, 68 (2010).

    Google Scholar 

  22. M. Yamamoto and Y. Tabata, Int. J. Tissue Regen., 4, 36 (2013).

    Google Scholar 

  23. G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).

    Article  CAS  Google Scholar 

  24. Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. Kim, H. S. Kim, C. Kirker-Head, and D. L. Kaplan, Biomaterials, 29, 3415 (2008).

    Article  CAS  Google Scholar 

  25. A. Nishidaa, T. Naganuma, T. Kanazawa, Y. Takashima, M. Yamada, and H. Okada, Int. J. Phytoremediation, 414, 193 (2011).

    Google Scholar 

  26. W. Kaewkorn, N. Limpeanchob, W. Tiyaboonchai, S. Pongcharoen, M. Sutheerawa-ttananonda, Biol. Res., 45, 45 (2012).

    Article  Google Scholar 

  27. K. Tsubouchi, Y. Ugarashi, Y. Takasu, and H. Yamada, Biosci. Biotechnol. Biochem., 69, 403 (2005).

    Article  CAS  Google Scholar 

  28. J. Liu, B. D. Lawrence, A. Liu, I. R. Schwab, L. A. Oliveira, and M. I. Rosenblatt, Invest. Ophthalmol. Vis. Sci., 53, 4130 (2012).

    Article  CAS  Google Scholar 

  29. R. Nazarov, H. Jin, and D. L. Kaplan, Biomacromolecules, 5, 718 (2004).

    Article  CAS  Google Scholar 

  30. B. B. Mandal, A. S. Priya, and S. C. Kundu, Acta Biomater., 5, 3007 (2009).

    Article  CAS  Google Scholar 

  31. A. Takeuchi, C. Ohtsuki, T. Miyazaki, M. Kamitakahara, S. Ogata, M. Yamazaki, Y. Furutani, H. Kinoshita, and M. Tanihara, J. R. Soc. Interace, 2, 373 (2005).

    Article  CAS  Google Scholar 

  32. T. Baba, K. Hanada, and I. Hashimoto, J. Dermatol. Sci., 12, 18 (1996).

    Article  CAS  Google Scholar 

  33. S. Zhaorigetu, N. Yanaka, M. Sasaki, H. Watanabe, and N. Kato, J. Photochem. Photobiol. B: Biol., 71, 11 (2003).

    Article  CAS  Google Scholar 

  34. S. Terada, T. Nishimura, M. Sasaki, H. Yamada, and M. Miki, Cytotechnology, 40, 3 (2002).

    Article  CAS  Google Scholar 

  35. S. Terada, M. Sasaki, K. Yanagihara, and H. Yamada, J. Biosci. Bioeng., 100, 667 (2005).

    Article  CAS  Google Scholar 

  36. G. Freddi, R. Mossotti, and R. Innocenti, J. Biotechnol., 106, 101 (2003).

    Article  CAS  Google Scholar 

  37. M. K. Sah and K. Pramanik, Int. J. Environ. Sci. Dev., 1, 404 (2010).

    Article  Google Scholar 

  38. D. H. Yang, H. N. Park, J. B. Lee, D. N. Heo, M. S. Bae, and I. K. Kwon, Int. J. Tissue Regen., 2, 119 (2011).

    Google Scholar 

  39. G. Khang, S. J. Lee, J. H. Jeon, J. H. Lee, and H. B. Lee, Polym. Korea, 24, 869 (2000).

    CAS  Google Scholar 

  40. Y. Zeng, J. Yang, K. Huang, Z. Lee, and X. Lee, J. Biomech., 34, 533 (2001).

    Article  CAS  Google Scholar 

  41. C. C. Chu, Ann. Surg., 365 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilson Khang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, H., Kim, E.Y., Kim, H. et al. Fabrication of transparent silk fibroin film for the regeneration of corneal endothelial cells; preliminary study. Macromol. Res. 22, 297–303 (2014). https://doi.org/10.1007/s13233-014-2037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2037-6

Keywords

Navigation