Skip to main content
Log in

Effect of hydroiodic acid-reduction of graphene oxide on electrical properties of polybenzimidazobenzophenanthroline/graphene oxide nanocomposites

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polybenzimidazobenzophenanthroline (BBL)/graphene nanocomposites were prepared by the liquid-phase exfoliation of graphene oxide (GO) in a BBL-methanesulfonic acid solution, followed by chemical reduction with hydroiodic acid (HI). This method prevents the aggregation of GO during the reduction of the solution-cast BBL/GO nanocomposite film. The in situ generated graphene played an important role in improving the electrical conductivity of the nanocomposites prepared by HI-reduction. The electrical conductivity of the HI-reduced BBL/GO nanocomposites (BBL/rGOHI) was ∼2.5 orders of magnitude greater than that of the BBL/GO nanocomposites with 5 wt% GO content. Raman and X-ray photoelectron spectroscopy revealed the removal of oxygen functionalities from the GO surface after HI-reduction. Structural characterization of the nanocomposites by X-ray diffraction and scanning electron microscopy exhibited good exfoliation and dispersion of both GO and HI-reduced GO (rGOHI) nanosheets within the BBL matrix. A reasonable improvement in the thermal stability of the HI-reduced nanocomposite was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Lett., 8, 3498 (2008).

    Article  CAS  Google Scholar 

  2. S. Biswas and L. T. Drzal, ACS Appl. Mater. Interfaces, 2, 2293 (2010).

    Article  CAS  Google Scholar 

  3. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun., 146, 351 (2008).

    Article  CAS  Google Scholar 

  4. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).

    Article  CAS  Google Scholar 

  5. H. B. Zhang, J. W. Wang, Q. Yan, W. G. Zheng, C. Chen, and Z. Z. Yu, J. Mater. Chem., 21, 5392 (2011).

    Article  CAS  Google Scholar 

  6. P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt, Macromol. Rapid Commun., 30, 316 (2009).

    Article  CAS  Google Scholar 

  7. C. Nethravathi, J. T. Rajamathi, N. Ravishankar, C. Shivakumara, and M. Rajamathi, Langmuir, 24, 8240 (2008).

    Article  CAS  Google Scholar 

  8. W. Chen and L. Yan, Nanoscale, 2, 559 (2010).

    Article  CAS  Google Scholar 

  9. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).

    Article  CAS  Google Scholar 

  10. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Polym. Sci., 56, 1178 (2011).

    CAS  Google Scholar 

  11. K. Kalaitzidou, H. Fukushima, and L. T. Drzal, Compos. Part A, 38, 1675 (2007).

    Article  Google Scholar 

  12. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).

    Article  CAS  Google Scholar 

  13. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).

    Article  CAS  Google Scholar 

  14. H. Shin, K. K. Kim, A. Benayad, S. Yoon, H. K. Park, I. Jung, M. H. Jin, H. Jeong, J. M. Kim, J. Choi, and Y. H. Lee, Adv. Funct. Mater., 19, 1987 (2009).

    Article  CAS  Google Scholar 

  15. G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, J. Phys. Chem. C, 112, 8192 (2008).

    Article  CAS  Google Scholar 

  16. J. R. Potts, S. Murali, Y. Zhu, X. Zhao, and R. S. Ruoff, Macromolecules, 44, 6488 (2011).

    Article  CAS  Google Scholar 

  17. R. Feng, G. Guan, W. Zhou, C. Li, D. Zhanga, and Y. Xiao, J. Mater. Chem., 21, 3931 (2011).

    Article  CAS  Google Scholar 

  18. T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Prog. Polym. Sci., 35, 1350 (2010).

    Article  CAS  Google Scholar 

  19. M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar- Rodil, P. Solís-Fernández, and J. M. D. Tascon, J. Phys. Chem. C, 114, 6426 (2010).

    Article  Google Scholar 

  20. J. Liu, H. Jeong, J. Liu, K. Lee, J. Park, Y. H. Ahn, and S. Lee, Carbon, 48, 2282 (2010).

    Article  CAS  Google Scholar 

  21. J. H. Park, A. Choudhury, B. L. Farmer, T. D. Dang, and S. Y. Park, Polymer, 53, 3937 (2012).

    Article  CAS  Google Scholar 

  22. C. Zhu, S. Guo, Y. Fang, and S. Dong, ACS Nano, 4, 2429 (2010).

    Article  CAS  Google Scholar 

  23. S. Pei, J. Zhao, J. Du, W. Ren, and H.-M. Cheng, Carbon, 48, 4466 (2010).

    Article  CAS  Google Scholar 

  24. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol., 3, 101 (2008).

    Article  CAS  Google Scholar 

  25. W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nat. Chem., 1, 403 (2009).

    Article  CAS  Google Scholar 

  26. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano, 2, 463 (2008).

    Article  CAS  Google Scholar 

  27. I. K. Moon, J. Lee, R. S. Ruoff, and H. Lee, Nat. Commun., DOI: 10.1038/ncomms1067, 21 September (2010).

    Google Scholar 

  28. F. Cataldo, O. Ursini, and G. Angelini, Fullerenes, Nanotubes and Carbon Nanostructures, 19, 461 (2011).

    Article  CAS  Google Scholar 

  29. T. Zhou, F. Chen, C. Tang, H. Bai, Q. Zhang, H. Deng, and Q. Fu, Compos. Sci. Technol., 71, 1266 (2011).

    Article  CAS  Google Scholar 

  30. J. Y. Jang and H. M. Jeong, Macromol. Res., 17, 626 (2009).

    Article  CAS  Google Scholar 

  31. S. M. Oh, H. Lee, H. M. Jeong, and B. K. Kim, Macromol. Res., 19, 379 (2011).

    Article  CAS  Google Scholar 

  32. S. C. Kim, H. Lee, and H. M. Jeong, Macromol. Res., 18, 1125 (2010).

    Article  CAS  Google Scholar 

  33. D. J. Lipomi, R. C. Chiechi, M. D. Dickey, and G. M. Whitesides, Nano Lett., 8, 2100 (2008).

    Article  CAS  Google Scholar 

  34. A. G. Manoj and K. S. Narayan, Opt. Mater., 21, 417 (2002).

    Article  Google Scholar 

  35. A. Babel and S. A. Jenekhe, J. Am. Chem. Soc., 125, 13656 (2003).

    Article  CAS  Google Scholar 

  36. M. Wagner, A. sterholm, S. P. Hirvonen, H. Tenhu, A. Ivaska, and C. Kvarnstrm, Macromol. Chem. Phys., 212, 1567 (2011).

    Article  CAS  Google Scholar 

  37. H. B. Zhang, W. G. Zheng, Q. Yan, Y. Yang, Z. H. Lu, J. W. Wang, Z. H. Lu, G. Y. Ji, and Z. Z. Yu, Polymer, 51, 1191 (2010).

    Article  CAS  Google Scholar 

  38. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  39. X. M. Feng, R. M. Li, Y. W. Ma, R. F. Chen, N. F. Shi, Q. L. Fan, and W. Huang, Adv. Funct. Mater., 21, 2989 (2011).

    Article  CAS  Google Scholar 

  40. Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, and B. Shao, Carbon, 48, 1686 (2010).

    Article  CAS  Google Scholar 

  41. C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed., 48, 7752 (2009).

    Article  CAS  Google Scholar 

  42. H. H. Song, A. V. Fratini, M. Chabinyc, G. E. Price, A. K. Agrawal, C. S. Wang, J. Burkette, D. S. Dudis, and F. E. Arnold, Synth. Met., 69, 533 (1995).

    Article  CAS  Google Scholar 

  43. H. H. Song and C. S. Wang, Polymer, 34, 4793 (1993).

    Article  CAS  Google Scholar 

  44. C. Z. Zhu, Y. X. Guo, Y. X. Fang, and S. J. Dong, ACS Nano, 4, 2429 (2010).

    Article  CAS  Google Scholar 

  45. J. F. Shen, Y. Z. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye, Chem. Mater., 21, 3514 (2009).

    Article  CAS  Google Scholar 

  46. W. Bauhofer and J. Z. Kovacs, Compos. Sci. Technol., 69, 1486 (2009).

    Article  CAS  Google Scholar 

  47. G. A. Gelves, M. H. Al-Saleh, and U. Sundararaj, J. Mater. Chem., 21, 829 (2011).

    Article  CAS  Google Scholar 

  48. M. Yoonessi and J. R. Gaier, ACS Nano, 4, 7211 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Young Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, A., Park, JH. & Park, SY. Effect of hydroiodic acid-reduction of graphene oxide on electrical properties of polybenzimidazobenzophenanthroline/graphene oxide nanocomposites. Macromol. Res. 21, 1254–1262 (2013). https://doi.org/10.1007/s13233-013-1169-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1169-4

Keywords

Navigation