Skip to main content
Log in

Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

The water regime affects a wide variety of physiological and biochemical processes in plants including an increased production of reactive oxygen species (ROS) capable of causing oxidative damage to proteins, DNA and lipids. Arbuscular mycorrhizal fungi (AMF) colonize a wide range of plant species though the ability of different AMF species to promote host growth or contribute to plant water deficit resistance varies. The first phase of olive tree cultivation takes place in a nursery where plants usually suffer stress by drying. Currently, olive production systems do not use of AMF to counteract this problem. To study the colonization strategies of two AMF strains and their efficiency with respect to growth and their effect on enzymatic activities, we inoculated them individually and co-inoculated then on olive plants under nursery growing conditions. The results showed the benefits generated by these fungi in terms of growth and survival rate. Co-inoculation, particularly, improved growth and reduced the damage due to water stress, partly as a result of the activation of the antioxidant defenses in the olive plant host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Al-Karaki GN (1998) Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress. Mycorriza 8(1):41–45

    Article  Google Scholar 

  • Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorriza 14:263–269

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorriza 11:3–42

    Article  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun. doi:10.1038/ncomms.1046

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Calberg I, Mannervik B (1985) Glutathione reductase. Meth Enzymol 113:484–489

    Article  Google Scholar 

  • Calvelo J (2011) Cosecha de la aceituna negra en Mendoza, Argentina. Diario La Diaria http://ladiaria.com.uy/articulo/2011/7/cosecha-de-la-aceituna-negra-en-mendoza-argentina/. Retrieved July, 2011

  • Calvente R, Cano C, Ferrol N, Azcón-Aguilar C, Barea JM (2004) Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets. Appl Soil Ecol 26:11–19

    Article  Google Scholar 

  • Clewer AG, Scarisbrick DH (2001) Factorial experiments. In: John Wiley Sons Ltd (ed) Practical statistics and experimental design for plant and crop science. The Atrium, Chicheste, pp 159–181

    Google Scholar 

  • FAO (2004) Faostat statistical databases. http://faostat.fao.org/site/636/DesktopDefault.aspx?PageID=636#ancor Accessed October 5, 2012

  • Franco JA, Bañón S, Vicente MJ, Miralles J, Martínez-Sánchez JJ (2011) Root development in horticultural plants grown under abiotic stress conditions – a review. J Hort Science Biotechnol 86(6):543–556

    Google Scholar 

  • Gerdemann JW (1975) Vesicular-arbuscular mycorrhizae. In: Torrey JG, Clarkson DT (eds) The development and function of root. Academic, New York, pp 575–591

    Google Scholar 

  • Giovanetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gogorcena Y, Iturbe-Ormaetxe I, Escuredo PR, Becana M (1995) Antioxidant defense against activated oxygen in pea nodules subjected to water stress. Plant Physiol 108:753–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hewitt EJ (1952) Sand and water culture methods in the study of plant nutrition. Tech Com Agric Bur 22

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207(4):604–611

    Article  CAS  Google Scholar 

  • Hossain MA, Asada K (1984) Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: its protection by ascorbate. Plant & Cell Physiol 25(7):1285–1295

    CAS  Google Scholar 

  • Janoušková M, Seddas P, Mrnka L, van Tuinen D, Dvorácková A, Tollot M, Gianinazzi-Pearson V, Vosátka M, Gollotte A (2009) Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 19:393–402

    Article  PubMed  Google Scholar 

  • Knight P, Coker CH, Anderson JM, Murchison DS, Watson CE (2005) Mist interval and K-IBA concentration influence rooting of orange and mountain azalea. Native Plants 6(2):111–117

    Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Marín M (2005) Arbuscular mycorrhizal inoculation in nursery practice. In: Rai MK (ed) Handbook of microbial biofertilizers. Food Products Press® An Imprint of the Haworth Press, Inc, New York, pp 289–324

    Google Scholar 

  • Menge JA, Johnson ELV, Platt RG (1978) Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol 81(3):553–559

    Article  CAS  Google Scholar 

  • Miller G, Nobuhiro S, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klukas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194(3):346–352

    Article  CAS  Google Scholar 

  • Parodi LR (1978) Enciclopedia Argentina de Agricultura y Jardinería. Tomo 1, Volumen 2. Editorial ACME, Buenos Aires, p 1114

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infections. Trans Brit Mycol Soc 55:158–161

    Article  Google Scholar 

  • Porcel R, Ruíz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55(403):1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Barea JM, Ruíz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143

    Article  CAS  Google Scholar 

  • Roldán A, Díaz-Vivancos P, Hernández JA, Carrasco L, Caravaca F (2008) Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil. J Plant Physiol 165(7):715–722

    Article  PubMed  Google Scholar 

  • Ruíz-Lozano JM, Azcón R, Palma JM (1996) Superoxide dismutase activity in arbuscular mycorrhizal Latuca sativa plants subjected to drought stress. New Phytol 134(2):327–333

    Article  Google Scholar 

  • Ruíz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  PubMed  Google Scholar 

  • Sánchez-Díaz M, Aguirreolea J (2002) El agua en la planta. In: Azcon-Bieto J, y Talon M (eds) Fundamentos de fisiología vegetal. McGraw-Hill-Interamericana, Madrid, pp 17–30

    Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105(12):1413–1421

    Article  Google Scholar 

  • SENASA (2006) http://www.sinavimo.gov.ar/cultivo/olivo. Accessed Dec 2011

  • Silvani VA (2011) Aislamiento y Caracterización in vitro de hongos micorrícicos Arbusculares de diferentes sitios en Argentina. Ph. D. Thesis. FCEyN. UBA

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Trappe JM (1986) Phylogenetic and ecologic aspects of mycotrophy in angiosperms from an evolutionary standpoint. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press Boca Raton, Florida, pp 5–25

    Google Scholar 

  • Wu QS, Zou YN (2009) Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus. Plant Soil Environ 55(10):436–442

    CAS  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2006a) Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163(11):1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, Xia RX (2006b) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Europ J Soil Biol 42:166–172

    Article  CAS  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Europ J Soil Biol 44:122–128

    Article  Google Scholar 

  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge to the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ministerio de Ciencia y Tecnología (MINCyT) and to the Universidad de Buenos Aires (UBA) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Bompadre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bompadre, M.J., Rios De Molina, M.C., Colombo, R.P. et al. Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes. Symbiosis 61, 105–112 (2013). https://doi.org/10.1007/s13199-013-0260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-013-0260-0

Keywords

Navigation