Revista Matemática Complutense

, Volume 24, Issue 1, pp 59–81

Topology of symplectic torus actions with symplectic orbits

Open Access
Article

DOI: 10.1007/s13163-010-0028-5

Cite this article as:
Duistermaat, J.J. & Pelayo, A. Rev Mat Complut (2011) 24: 59. doi:10.1007/s13163-010-0028-5

Abstract

We give a concise overview of the classification theory of symplectic manifolds equipped with torus actions for which the orbits are symplectic (this is equivalent to the existence of a symplectic principal orbit), and apply this theory to study the structure of the leaf space induced by the action. In particular we show that if M is a symplectic manifold on which a torus T acts effectively with symplectic orbits, then the leaf space M/T is a very good orbifold with first Betti number b1(M/T)=b1(M)−dim T.

Keywords

Symplectic manifold Torus action Orbifold Betti number Lie group Symplectic orbit Distribution Foliation 

Mathematics Subject Classification (2000)

53D35 53C10 
Download to read the full article text

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Mathematisch InstituutUniversiteit UtrechtUtrechtThe Netherlands
  2. 2.Mathematics DepartmentUniversity of California–BerkeleyBerkeleyUSA

Personalised recommendations