Skip to main content
Log in

New adaptive modal and DTV filtering routines for the DG method on triangular grids applied to the Euler equations

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

In this paper, we continue our investigations started in Meister et al. (Numer. Methods Partial Differ. Equ. 2011) on the development of adaptive filtering techniques for DG methods on unstructured triangular grids solving hyperbolic conservation laws. While in our former work the focus was put on scalar conservation laws in order to study the principle mechanisms of the proposed techniques, new results are now presented concerning the application of adaptive modal and DTV filtering to the Euler equations of gas dynamics. To demonstrate the applicability of this approach for practically relevant problems, we perform experiments on standard test cases such as shock-vortex interactions, a double mach reflection as well as flow through a wind tunnel containing a forward facing step. The constructed modal filter is based on a specific spectral viscosity formulation on triangular grids. In this context, this paper gives a new result on the energy dissipation of the involved damping step which is based on an interesting estimate on weighted L 2-norms on the reference triangle. With respect to adaptive modal filtering, we investigate the behaviour of two different shock indicators which are new candidates for elementwise modal filtering in the DG context. Furthermore, we propose a novel adaptive strategy for the original DTV iteration as well as the modified DTV filter on subtriangle graphs constructed in Meister et al. (2011). For both filtering techniques, convergence studies away from the discontinuities of the exact entropy solution are additionally carried out for a scalar nonlinear test case yielding an improvement on the former results in Meister et al. (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barter, G.E., Darmofal, D.L.: Shock capturing with higher-order, PDE-based artificial viscosity. AIAA 2007–3823 (2007)

  • Bernardi C., Maday Y.: Polynomial interpolation results in Sobolev spaces. J. Comput. Appl. Math. 43, 53–80 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Biswas R., Devine K.D., Flaherty J.E.: Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 14, 255–283 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Carpenter, M.H., Kennedy, C.A.: Fourth-order 2N-storage Runge–Kutta schemes. NASA Report TM 109112 (1994)

  • Chan T.F., Osher S., Shen J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process 10, 231–241 (2001)

    Article  MATH  Google Scholar 

  • Cockburn B., Hou S., Shu C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  • Cockburn B., Shu C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Don W.S.: Numerical study of pseudospectral methods in shock wave applications. J. Comput. Phys. 110, 103–111 (1994)

    Article  MATH  Google Scholar 

  • Don W.S., Gottlieb D., Jung J.H.: A multidomain spectral method for supersonic reactive flows. J. Comput. Phys. 192, 325–354 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Dubiner M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Feistauer M., Kučera V.: On a robust discontinuous Galerkin technique for the solution of compressible flow. J. Comput. Phys. 224(1), 208–221 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Gottlieb D., Hesthaven J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128, 83–131 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Gottlieb D., Shu C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1998)

    Article  MathSciNet  Google Scholar 

  • Hesthaven J.S., Warburton T.: Nodal discontinuous: Galerkin methods algorithms analysis and applications. Springer, New York (2008)

    Book  MATH  Google Scholar 

  • Jaffre J., Johnson C., Szpessy A.: Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Models Methods Appl. Sci. 5, 367–386 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang G.-S., Shu C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Karamanos G.-S., Karamanos G.-S., Karamanos G.-S.: A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163, 22–50 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Karniadakis G.E., Sherwin S.: Spectral/hp element methods for computational fluid dynamics. 2nd edn. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  • Koornwinder T.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R. (eds) Theory and Applications of Special Functions, Academic Press, San Diego (1975)

    Google Scholar 

  • Krivodonova L.: Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys. 226, 879–896 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Krivodonova L., Xin J., Remacle J.-F., Chevaugeon N., Flaherty J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Levin J.G., Iskandarani M., Haidvogel D.B.: A spectral filtering procedure for eddy-resolving simulations with a spectral element ocean model. J. Comput. Phys. 137, 130–154 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Levy M.N., Nair R.D., Tufo H.M.: A high-order element-based Galerkin method for the barotropic vorticity equation. Int. J. Numer. Meth. Fluids 59, 1369–1387 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma H.: Chebyshev–Legendre super spectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 35(3), 893–908 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Maday Y., Ould Kaber S.M., Tadmor E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • Meister, A., Ortleb, S., Sonar, Th.: Application of spectral filtering to discontinuous Galerkin methods on triangulations. Numer. Methods Partial Differ. Equ. (2011). doi:10.1002/num.20705

  • Ortleb, S.: Ein diskontinuierliches Galerkin-Verfahren hoher Ordnung auf Dreiecksgittern mit modaler Filterung zur Lösung hyperbolischer Erhaltungsgleichungen, PhD thesis, Kassel University Press (2011)

  • Proriol J.: Sur une famille de polynomes à deux variables orthogonaux dans un triangle. C. R. Acad. Sci. Paris 245, 2459–2461 (1957)

    MathSciNet  MATH  Google Scholar 

  • Persson, P.-O., Peraire, J.: Sub-Cell Shock Capturing for Discontinuous Galerkin Methods. AIAA-2006-0112 (2006)

  • Qiu J., Shu C.-W.: Hermite WENO schemes and their application as limiters for Runge Kutta discontinuous Galerkin method: one dimensional case. J. Comput. Phys. 193, 115–135 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu J., Shu C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • Qiu J., Shu C.-W.: Hermite WENO schemes and their application as limiters for Runge Kutta discontinuous Galerkin method: two dimensional case. Comput Fluids 34, 642–663 (2005b)

    Article  MathSciNet  MATH  Google Scholar 

  • Sarra S.A.: Digital total variation filtering as postprocessing for Chebyshev pseudospectral methods for conservation laws. Numer. Algorithms 41, 17–33 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Sengupta, K., Mashayek, F., Jacobs, G.B.: Large-eddy simulation using a discontinuous Galerkin spectral element method. AIAA-2007-402 (2007)

  • Shu C.-W., Osher S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Szegö, G.: Orthogonal Polynomials., vol. 23. AMS Colloquium Publications, Providence (1939)

  • Tadmor E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26(1), 30–44 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Tadmor E.: Super viscosity and spectral approximations of nonlinear conservation laws. Numer. Methods Fluid Dyn. 4, 69–82 (1993)

    MathSciNet  Google Scholar 

  • Woodward P.R., Colella P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, M., Wang, Z.J.: A parameter-free generalized moment limiter for high-order methods on unstructured grids. AIAA-2009-605 (2009)

  • Zhu J., Qiu J., Shu C.-W., Dumbser M.: Runge–Kutta discontinuous Galerkin method using WENO limiters II: unstructured meshes. J. Comput. Phys. 227, 4330–4353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meister, A., Ortleb, S. & Sonar, T. New adaptive modal and DTV filtering routines for the DG method on triangular grids applied to the Euler equations. Int J Geomath 3, 17–50 (2012). https://doi.org/10.1007/s13137-012-0030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-012-0030-9

Keywords

Mathematics Subject Classification (2010)

Navigation