Skip to main content
Log in

Nanotechnology-Based Biosensors and Diagnostics: Technology Push versus Industrial/Healthcare Requirements

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

There have been considerable advances in the field of nanotechnology-based biosensors and diagnostics (NBBD) during the last two decades. These include the production of nanomaterials (NMs), employing them for new biosensing and diagnostic applications, their extensive characterization for in vitro and in vivo applications, and toxicity analysis. All these developments have led to tremendous technology push and successful demonstrations of several promising NBBD. However, there has been a significant lag in their commercialization, especially due to the lack of international regulatory guidelines for evaluating the safety of NMs and the growing public concerns about their toxicity. Despite these numerous advances and the recent regulatory approval of several NMs, it still remains to be seen if NBBD are superior to conventional ones (not based on NMs), reliable, reproducible, cost effective, and robust enough to meet the requirements of industries and healthcare. This manuscript provides a critical review of NBBD, the technology push, and the industrial/healthcare requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Leary, J. F. (2010). Nanotechnology: what is it and why is small so big? Canadian Journal of Ophthalmology, 45, 449–456.

    Article  Google Scholar 

  2. Weiss, P. S. (2010). Nanoscience and nanotechnology: present and future. ACS Nano, 4, 1771–1772.

    Article  Google Scholar 

  3. Jiarong, C., Yuqing, M., Nongyue, H., Xiaohua, W., Sijiao, L. (2004). Nanotechnology and biosensors. Biotechnology Advances, 22, 505–518.

    Article  Google Scholar 

  4. Vaddiraju, S., Tomazos, I., Burgess, D. J., Jain, F. C., Papadimitrakopoulos, F. (2010). Emerging synergy between nanotechnology and implantable biosensors: a review. Biosensors and Bioelectronics, 25, 1553–1565.

    Article  Google Scholar 

  5. Cheng, M. M. C., Cuda, G., Bunimovich, Y. L., et al. (2006). Nanotechnologies for biomolecular detection and medical diagnostics. Current Opinion in Chemical Biology, 10, 11–19.

    Article  Google Scholar 

  6. Hauck, T. S., Giri, S., Gao, Y., Chan, W. C. W. (2010). Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Advance Drug Delaware Review, 62, 438–448.

    Article  Google Scholar 

  7. Sosnik, A., & Amiji, M. (2010). Nanotechnology solutions for infectious diseases in developing nations. Advance Drug Delaware Review, 62, 375–377.

    Article  Google Scholar 

  8. Kim, P. S., Djazayeri, S., Zeineldi, R. (2011). Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecologic Oncology, 120, 393–403.

    Article  Google Scholar 

  9. Stylios, G. K., Giannoudis, P. V., Wan, T. (2005). Applications of nanotechnologies in medical diagnostics. Injury, International Journal of the Care of the Injured, 36S, S6–S13.

    Google Scholar 

  10. Fournier-Wirth, C., Coste, J. (2010). Nanotechnologies for pathogen detection: future alternatives? Biologicals, 38, 9–13.

    Article  Google Scholar 

  11. Ansari, A. A., Alhoshan, M., Alsalhi, M. S., Aldwayyan, A. S. (2010). Prospects of nanotechnology in clinical immunodiagnostics. Sensors, 10, 6535–6581.

    Article  Google Scholar 

  12. Jain, K. K. (2005). Nanotechnology in clinical laboratory diagnostics. Clinica Chimica Acta, 358, 37–54.

    Article  Google Scholar 

  13. Thomas, C. R., George, S., Horst, A. M., et al. (2011). Nanomaterials in the environment: from materials to high-throughput screening to organisms. ACS Nano, 5, 13–20.

    Article  Google Scholar 

  14. Shi, J., Votruba, A. R., Farokhzad, O. C., Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Letters, 10, 3223–3230.

    Article  Google Scholar 

  15. Vashist, S. K., Zheng, D., Pastorin, G., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2011). Delivery of drugs and biomolecules using carbon nanotubes. Carbon, 49, 4077–4097.

    Article  Google Scholar 

  16. Li, J., Yap, S. Q., Yoong, S. L., et al. (2012). Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon, 50, 1625–1634.

    Article  Google Scholar 

  17. Moghimi, S. M., Peer, D., Langer, R. (2011). Reshaping the future of nanopharmaceuticals: ad ludicum. ACS Nano, 5, 8454–8458.

    Article  Google Scholar 

  18. Kim, K. Y. (2007). Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 103–110.

    Article  Google Scholar 

  19. Misra, R., Acharya, S., Sahoo, S. K. (2010). Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today, 15, 842–850.

    Article  Google Scholar 

  20. Kawasaki, E. S., & Player, A. (2005). Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 1, 101–109.

    Article  Google Scholar 

  21. Farokhzad, O. C., & Langer, R. (2006). Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Del Rev, 58, 1456–1459.

    Article  Google Scholar 

  22. Phan, J. H., Moffitt, R. A., Stokes, T. H., Liu, J., Young, A. N., Nie, S., et al. (2009). Convergence of biomarkers, bioinformatics and nanotechnology for individualized cancer treatment. Trends in Biotechnology, 27, 350–358.

    Article  Google Scholar 

  23. Yan, Y., Such, G. K., Johnston, A. P. R., Best, J. P., Caruso, F. (2012). Engineering particles for therapeutic delivery: prospects and challenges. ACS Nano. doi:10.1021/nn3016162.

  24. Fortina, P., Kricka, L. J., Bonnell, D., Kulkarni, A., Wang, J., Miyahara, Y., et al. (2010). Nanotechnology: improving clinical testing? Clinical Chemistry, 56, 1384–1389.

    Article  Google Scholar 

  25. Zarbin, M. A., Montemagno, C., Leary, J. F., Ritch, R. (2010). Nanotechnology in ophthalmology. Canadian Journal of Ophthalmology, 45, 457–476.

    Article  Google Scholar 

  26. Re, F., Gregori, M., Masserini, M. (2012). Nanotechnology for neurodegenerative disorders. Maturitas. doi:10.1016/j.maturitas.2011.12.015.

  27. Sahoo, S. K., Parveen, S., Panda, J. J. (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology, and Medicine, 3, 20–31.

    Article  Google Scholar 

  28. Brambilla, D., Droumaguet, B. L., Nicolas, J., et al. (2011). Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 521–540.

    Article  Google Scholar 

  29. Farrell, D., Alper, J., Ptak, K., Panaro, N. J., Grodzinski, P., Barker, A. D. (2010). Recent advances from the National Cancer Institute Alliance for Nanotechnology in Cancer. ACS Nano, 4, 589–594.

    Article  Google Scholar 

  30. Retél, V. P., Hummel, M. J. M., Harten, W. H. V. (2009). Review on early technology assessments of nanotechnologies in oncology. Molecular Oncology, 3, 394–401.

    Article  Google Scholar 

  31. Boisseau, P., & Loubaton, B. (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12, 620–636.

    Article  Google Scholar 

  32. Sawhney, A. P. S., Condon, B., Singh, K. V., Pang, S. S., Li, G., Hui, D. (2008). Modern applications of nanotechnology in textiles. Textile Research Journal, 78, 731–739.

    Article  Google Scholar 

  33. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363, 1–24.

    Article  Google Scholar 

  34. Sakamoto, J. H., Ven, A. L. V. D., Godin, B., et al. (2010). Enabling individualized therapy through nanotechnology. Pharmacological Research, 62, 57–89.

    Article  Google Scholar 

  35. Bonnell, D. (2010). The next decade of nanoscience and nanotechnology. ACS Nano, 4, 6293–6294.

    Article  Google Scholar 

  36. http://www.wtec.org/nano2/

  37. Gabellieri, C. (2011). Nanomedicine in the European Commission policy for nanotechnology. Nanomedicine: Nanotechnology, Biology, and Medicine, 7, 519–520.

    Article  Google Scholar 

  38. Horton, M. A., & Khan, A. (2006). Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2, 42–48.

    Article  Google Scholar 

  39. Pandza, K., Wilkins, T. A., Alfoldi, E. A. (2011). Collaborative diversity in a nanotechnology innovation system: evidence from the EU framework programme. Technovation, 31, 476–489.

    Article  Google Scholar 

  40. Allarakhia, M., & Walsh, S. (2012). Analyzing and organizing nanotechnology development: application of the institutional analysis development framework to nanotechnology consortia. Technovation, 32, 216–226.

    Article  Google Scholar 

  41. http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

  42. Service RF. (2001). Breakthrough of the year: molecules get wired. Science, 294, 2442–2443.

    Article  Google Scholar 

  43. Service RF. (2002). Bell Labs fires star physicist found guilty of forging data. Science, 298, 30–31.

    Article  Google Scholar 

  44. http://www.sciencemag.org/content/298/5595/961.2

  45. Hersam, M. (2011). Nanoscience and nanotechnology in the posthype era. ACS Nano, 5, 1–2.

    Article  Google Scholar 

  46. Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X., Williams, D. E. (2012). Point of care diagnostics: status and future. Analytical Chemistry, 84, 487–515.

    Article  Google Scholar 

  47. Rasooly, A. (2006). Moving biosensors to point-of-care cancer diagnostics. Biosensors and Bioelectronics, 21, 1847–1850.

    Article  Google Scholar 

  48. Frasco, M. F., & Chaniotakis, N. (2010). Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Analytical and Bioanalytical Chemistry, 396, 229–240.

    Article  Google Scholar 

  49. Bruls, D. M., Evers, T. H., Kahlman, J. A. H., et al. (2009). Rapid integrated biosensor for multiplexed immunoassays based on actuated magnetic nanoparticles. Lab on a Chip, 9, 3504–3510.

    Article  Google Scholar 

  50. Cheng, Y., Zhao, L., Li, Y., Xu, T. (2011). Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chemical Society Reviews, 40, 2673–2703.

    Article  Google Scholar 

  51. Ghazani, A. A., Lee, J. A., Klostranec, J., et al. (2006). High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals. Nano Letters, 6, 2881–2886.

    Article  Google Scholar 

  52. Kairemo, K., Erba, P., Bergström, K., Pauwels, E. K. J. (2008). Nanoparticles in cancer. Current Radiopharmaceuticals, 1, 30–36.

    Google Scholar 

  53. Bianco A., Kostarelos K., Partidos C.D., Prato M. (2005). Biomedical applications of functionalised carbon nanotubes. Chemical Communication, 571–577

  54. Vashist, S. K., Zheng, D., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances, 29, 169–188.

    Article  Google Scholar 

  55. Dresselhaus, M. S., & Araujo, P. T. (2010). The 2010 Nobel Prize in physics for graphene: some perspectives. ACS Nano, 4, 6297–6302.

    Article  Google Scholar 

  56. Zheng, D., Vashist, S.K., Luong, J.H.T., Al-Rubeaan, K., Sheu, F.S. (2012). Amperometric glucose biosensing using 3-aminopropyltriethoxysilane functionalized graphene. Talanta, doi:10.1016/j.talanta.2012.05.014.

  57. Azzazy, H. M. E., Mansour, M. M. H., Kazmierczak, S. C. (2007). From diagnostics to therapy: prospects of quantum dots. Clinical Biochemistry, 40, 917–927.

    Article  Google Scholar 

  58. Parveen, S., Misra, R., Sahoo, S. K. (2012). Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 8, 147–166.

    Article  Google Scholar 

  59. Fan, Z., Shelton, M., Singh, A. K., Senapati, D., Khan, S. A., Ray, P. C. (2012). Multifunctional plasmonic shell–magnetic core nanoparticles for targeted diagnostic, isolation, and photothermal destruction of tumor cells. ACS Nano, 6, 1065–1073.

    Article  Google Scholar 

  60. Boisselier, E., & Astruc, D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chemical Society Reviews, 38, 1759–1782.

    Article  Google Scholar 

  61. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., El-Sayed, M. A. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 41, 2740–2779.

    Article  Google Scholar 

  62. Dykman, L., & Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 41, 2256–2282.

    Article  Google Scholar 

  63. Misiakos, K., Kakabakos, S. E., Petrou, P. S., Ruf, H. H. (2004). A monolithic silicon optoelectronic transducer as a real-time affinity biosensor. Analytical Chemistry, 76, 1366–1373.

    Article  Google Scholar 

  64. Weizmann, Y., Patolsky, F., Willner, I. (2001). Amplified detection of DNA and analysis of single-base mismatches by the catalyzed deposition of gold on Au-nanoparticles. Analyst, 126, 1502–1504.

    Article  Google Scholar 

  65. Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547–1562.

    Article  Google Scholar 

  66. Lee, K., Drachev, V. P., Irudayaraj, J. (2011). DNA–gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. ACS Nano, 5, 2109–2117.

    Article  Google Scholar 

  67. Koh, I., & Josephson, L. (2009). Magnetic nanoparticle sensors. Sensors, 9, 8130–8145.

    Article  Google Scholar 

  68. Haun, J. B., Yoon, T.-J., Lee, H., Weissleder, R. (2010). Magnetic nanoparticle biosensors. WIREs Nanomedicine Nanobiotechnology, 2, 291–304.

    Article  Google Scholar 

  69. Dittmer, W. U., de Kievit, P., Prins, M. W. J., Vissers, J. L. M., Mersch, M. E. C., Martens, M. F. W. C. (2008). Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation. Journal of Immunological Methods, 338, 40–46.

    Article  Google Scholar 

  70. Sashiwa, H., & Aiba, S.-I. (2004). Chemically modified chitin and chitosan as biomaterials. Progress in Polymer Science, 29, 887–908.

    Article  Google Scholar 

  71. Koev, S. T., Dykstra, P. H., Luo, X., Rubloff, G. W., Bentley, W. E., Payne, G. F., et al. (2010). Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab on a Chip, 10, 3026–3042.

    Article  Google Scholar 

  72. Kean, T., & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Del Rev, 62, 3–11.

    Article  Google Scholar 

  73. Satija, J., Sai, V. V. R., Mukherji, S. (2011). Dendrimers in biosensors: concepts and applications. Journal of Materials Chemistry, 21, 14367–14386.

    Article  Google Scholar 

  74. Shen, M., & Shi, X. (2010). Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale, 2, 1596–1610.

    Article  Google Scholar 

  75. Dennis, M., Vriezema, D. M., Aragonès, M. C., Elemans, J. A. A. W., Cornelissen, J. J. L. M., Rowan, A. E., et al. (2005). Self-assembled nanoreactors. Chemical Reviews, 105, 1445–1489.

    Article  Google Scholar 

  76. Malam, Y., Loizidou, M., Seifalian, A. M. (2009). Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30, 592–599.

    Article  Google Scholar 

  77. Christensen, S. M., & Stamou, D. (2007). Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter, 3, 828–836.

    Article  Google Scholar 

  78. Jelinek, R., & Kolusheva, S. (2007). Biomolecular sensing with colorimetric vesicles. Topics in Current Chemistry, 277, 155–180.

    Article  Google Scholar 

  79. Leung, A. C. W., Hrapovic, S., Lam, E., Liu, Y., Male, K. B., Mahmoud, K. A., et al. (2011). Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small, 7, 302–305.

    Article  Google Scholar 

  80. Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W., Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30, 283–290.

    Article  Google Scholar 

  81. Shukla, G. C., Haque, F., Tor, Y., et al. (2011). A boost for the emerging field of RNA nanotechnology. ACS Nano, 5, 3405–3418.

    Article  Google Scholar 

  82. Modi, S., Bhatia, D., Simmel, F. C., Krishnan, Y. (2010). Structural DNA nanotechnology: from bases to bricks, from structure to function. Journal of Physical Chemistry Letters, 1, 1994–2005.

    Article  Google Scholar 

  83. Campolongo, M. J., Tan, S. J., Xu, J., Luo, D. (2010). DNA nanomedicine: engineering DNA as a polymer for therapeutic and diagnostic applications. Adv Drug Del Rev, 62, 606–616.

    Article  Google Scholar 

  84. Xiao, Y., & Li, C. M. (2008). Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalytical, 20, 648–662.

    Article  Google Scholar 

  85. Hussain, F., Hojjati, M., Okamoto, M., Gorga, R. E. (2006). Polymer–matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of Composite Materials, 40, 1511–1575.

    Article  Google Scholar 

  86. Rajesh, A. T., & Kumar, D. (2009). Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors and Actuators B: Chemistry, 136, 275–286.

    Article  Google Scholar 

  87. Dixit, C. K., & Kaushik, A. (2012). Nano-structured arrays for multiplex analyses and lab-on-a-chip applications. Biochemical and Biophysical Research Communications, 419, 316–320.

    Article  Google Scholar 

  88. Dixit, C.K., Kumar, A., Kaushik, A. (2012). Nanosphere lithography-based platform for developing rapid and high sensitivity microarray systems. Biochemistry and Biophysics Research Communications. doi:10.1016/j.bbrc.2012.05.144.

  89. Binnig, G., Quate, C. F., Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56, 930–933.

    Article  Google Scholar 

  90. http://www.ntmdt.com/spm-principles

  91. Mitsakakis, K., Sekula-Neuner, S., Lenhert, S., Fuchs, H., Gizeli, E. (2012). Convergence of Dip-Pen Nanolithography and acoustic biosensors towards a rapid-analysis multi-sample microsystem. Analyst, 137, 3076–3082.

    Article  Google Scholar 

  92. Mitsakakis, K., Lousinian, S., Logothetidis, S. (2007). Early stages of human plasma proteins adsorption probed by atomic force microscope. Biomolecular Engineering, 24, 119–124.

    Article  Google Scholar 

  93. Florence, A. T. (2004). The dangers of generalization in nanotechnology. Drug Discovery Today, 9, 60–61.

    Article  Google Scholar 

  94. Türk, V., Kaiser, C., Schaller, S. (2008). Invisible but tangible? Societal opportunities and risks of nanotechnologies. Journal of Cleaner Production, 16, 1006–1009.

    Article  Google Scholar 

  95. Wiek, A., Lang, D. J., Siegrist, M. (2008). Qualitative system analysis as a means for sustainable governance of emerging technologies: the case of nanotechnology. Journal of Cleaner Production, 16, 988–999.

    Article  Google Scholar 

  96. Novak, P. J., Arnold, W. A., Blazer, V. S., et al. (2011). On the need for a national (U.S.) research program to elucidate the potential risks to human health and the environment posed by contaminants of emerging concern. Environmental Science and Technology, 45, 3829–3830.

    Google Scholar 

  97. Malloy, T. F. (2011). Nanotechnology regulation: a study in claims making. ACS Nano, 5, 5–12.

    Article  MathSciNet  Google Scholar 

  98. Sharifi, S., Behzadi, S., Laurent, S., Forrest, M. L., Stroeve, P., Mahmoudi, M. (2012). Toxicity of nanomaterials. Chemical Society Reviews, 41, 2323–2343.

    Article  Google Scholar 

  99. Oberdörster, G., Oberdörster, E., Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823–839.

    Article  Google Scholar 

  100. Oberdörster, G. (2005). Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of Internal Medicine, 267, 89–105.

    Article  Google Scholar 

  101. Holl, M. M. B. (2009). Nanotoxicology: a personal perspective. WIREs Nanomedicine and Nanobiotechology, 1, 353–359.

    Article  Google Scholar 

  102. Hutchison, J. E. (2008). Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano, 2, 395–402.

    Article  Google Scholar 

  103. Leroueil, P. R., Hong, S., Mecke, A., Baker, J. R., Orr, B. G., Holl, M. M. B. (2007). Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Accounts of Chemical Research, 40, 335–342.

    Article  Google Scholar 

  104. Marquis, B. J., Love, S. A., Braun, K. L., Haynes, C. L. (2009). Analytical methods to assess nanoparticle toxicity. Analyst, 134, 425–439.

    Article  Google Scholar 

  105. Cui, H. F., Vashist, S. K., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2010). Interfacing carbon nanotubes with living mammalian cells and cytotoxicity issues. Chemical Research in Toxicology, 23, 1131–1147.

    Article  Google Scholar 

  106. Oberdörster, G., Maynard, A., Donaldson, K., ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, et al. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2, 8. doi:10.1186/1743-8977-2-8.

    Article  Google Scholar 

  107. Cash, K. J., & Clark, H. A. (2010). Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends in Molecular Medicine, 16, 584–593.

    Article  Google Scholar 

  108. Zheng, D., Vashist, S. K., Al-Rubeaan, K., Luong, J. H. T., Sheu, F. S. (2012). Rapid and simple preparation of a reagentless glucose electrochemical biosensor. Analyst. doi:10.1039/C2AN35128E.

  109. Dixit, C. K., Vashist, S. K., O’Neill, F. T., O’Reilly, B., MacCraith, B. D., O’Kennedy, R. (2010). Development of a high sensitivity rapid sandwich ELISA procedure and its comparison with the conventional approach. Analytical Chemistry, 82, 7049–7052.

    Article  Google Scholar 

  110. Dixit, C. K., Vashist, S. K., MacCraith, B. D., O’Kennedy, R. (2011). Multi-substrate compatible ELISA procedures for rapid and high sensitivity immunoassays. Nature Protocols, 6, 439–445.

    Article  Google Scholar 

  111. Kostarelos, K., Bianco, A., Prato, M. (2008). Hype around nanotubes creates unrealistic hopes. Nature, 453, 280.

    Article  Google Scholar 

  112. Kotov, N. A. (2009). Politics and nanotechnology in the health care industry. ACS Nano, 3, 2855–2856.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support received from EU-FP7 Health and EU-FP7 ICT for the project grant numbers 258759 and 318408, respectively. K.M. would also like to acknowledge the financial support received from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar Vashist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vashist, S.K., Venkatesh, A.G., Mitsakakis, K. et al. Nanotechnology-Based Biosensors and Diagnostics: Technology Push versus Industrial/Healthcare Requirements. BioNanoSci. 2, 115–126 (2012). https://doi.org/10.1007/s12668-012-0047-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-012-0047-4

Keywords

Navigation