Skip to main content
Log in

Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Passive microwave remotely sensed soil moisture products, such as Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) data, have been routinely used to monitor global soil moisture patterns. However, they are often limited in their ability to provide reliable spatial distribution data for soil moisture due to their coarse spatial resolutions. In this study, three machine learning approaches—random forest, boosted regression trees, and Cubist—were examined for the downscaling of AMSR-E soil moisture (25 × 25 km) data over two regions (South Korea and Australia) with different climatic characteristics using moderate resolution imaging spectroradiometer products (1 km), including surface albedo, land surface temperature (LST), Normalized Difference Vegetation Index, Enhanced Vegetation Index, Leaf Area Index, and evapotranspiration (ET). Results showed that the random forest approach was superior to the other machine learning models for downscaling AMSR-E soil moisture data in terms of the correlation coefficient [r = 0.71/0.84 (South Korea/Australia) for random forest, 0.75/0.77 for boosted regression trees, and 0.70/0.61 for Cubist] and root-mean-square error (RMSE = 0.049/0.057, 0.052/0.078, and 0.051/0.063, respectively) through cross-validation. The ET and LST were identified as the most influential among the six input parameters when estimating AMSR-E soil moisture for South Korea, while ET, albedo, and LST were very useful for Australia. In overall, the downscaled soil moisture with 1 km resolution yielded a higher correlation with in situ observations than the original AMSR-E soil moisture data. The latter appeared higher than the downscaled data in forested areas, possibly due to the overestimation of soil moisture by passive microwave sensors over forests, which implies that downscaling can mitigate such overestimation of soil moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adamchuk V, Hummel JW, Morgan MT, Upadhyaya SK (2004) On-the-go soil sensors for precision agriculture. Comput Electron Agric 44:71–91

    Article  Google Scholar 

  • Aires F (2014) Combining datasets of satellite-retrieved products. Part I: methodology and water budget closure. J Hydrometeorol 15:1677–1691

    Article  Google Scholar 

  • Al-Shrafany D, Rico-Ramirez M, Han D (2012) Calibration of roughness parameters using rainfall runoff water balance for satellite soil moisture retrieval. J Hydrol Eng 17:704–714

    Article  Google Scholar 

  • Al-Yaari A, Wigneron J, Ducharne A, Kerr Y, de Rosnay P, de Jeu R et al (2014) Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates. Remote Sens Environ 149:181–195

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brocca L, Hasenauer S, Lacava T, Melone F, Moramarco T, Wagner W et al (2011) Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sens Environ 115:3390–3408

    Article  Google Scholar 

  • Brown JF, Wardlow BD, Tadesse T, Hayes MJ, Reed BC (2008) The Vegetation Drought Response Index (VegDRI): a new integrated approach for monitoring drought stress in vegetation. GISci Remote Sens 45(1):16–46

    Article  Google Scholar 

  • Chauhan NS, Miller S, Ardanuy P (2003) Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach. Int J Remote Sens 24:4599–4622

    Article  Google Scholar 

  • Chen Y, Yang K, Qin J, Zhao L (2013) Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J Geophys Res Atmos 118:4466–4475

    Article  Google Scholar 

  • Choi M (2012) Evaluation of multiple surface soil moisture for Korean regional flux monitoring network sites: advanced microwave scanning radiometer E, land surface model, and ground measurements. Hydrol Process 26:597–603

    Article  Google Scholar 

  • Choi M, Hur Y (2012) A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sens Environ 124:259–269

    Article  Google Scholar 

  • Choi M, Jacobs J, Anderson M, Bosch D (2013) Evaluation of drought indices via remotely sensed data with hydrological variables. J Hydrol 476:265–273

    Article  Google Scholar 

  • De Jeu RAM, Wagner WW, Holmes TRH, Dolman AJ, van de Giesen NC, Friesen J (2008) Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv Geophys 28:399–420. doi:10.1007/s10712-008-9044-0

    Article  Google Scholar 

  • Dobriyal P, Qureshi A, Badola R, Hussain S (2012) A review of the methods available for estimating soil moisture and its implications for water resource management. J Hydrol 458–459:110–117

    Article  Google Scholar 

  • Draper CS, Walker JP, Steinle PJ, de Jeu RA, Holmes TR (2009) An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens Environ 113:703–710

    Article  Google Scholar 

  • Finn M, Lewis M, Bosch D, Giraldo M, Yamamoto K, Sullivan D et al (2011) Remote sensing of soil moisture using airborne hyperspectral data. GISci Remote Sens 48:522–540

    Article  Google Scholar 

  • Gao Z, Wang Q, Cao X, Gao W (2014) The responses of vegetation water content (EWT) and assessment of drought monitoring along a coastal region using remote sensing. GISci Remote Sens 51:1–16

    Article  Google Scholar 

  • Gleason C, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80–91

    Article  Google Scholar 

  • Grayson R, Western A (1998) Towards areal estimation of soil water content from point measurements: time and space stability of mean response. J Hydrol 207:68–82

    Article  Google Scholar 

  • Idso SB, Jackson RD, Reginato RJ, Kimball BA, Nakayama FS (1975) The dependence of bare soil albedo on soil water content. J Appl Meteorol 14:109–113

    Article  Google Scholar 

  • Im J, Jensen J, Jensen R, Gladden J, Waugh J, Serrato M (2012) Vegetation cover analysis of hazardous waste sites in utah and arizona using hyperspectral remote sensing. Remote Sens 4:327–353

    Article  Google Scholar 

  • Kim J, Hogue TS (2012) Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Trans Geosci Remote Sens 50:446–460

    Article  Google Scholar 

  • Kim Y, Im J, Ha H, Choi J, Ha S (2014) Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GISci Remote Sens 51:158–174

    Article  Google Scholar 

  • Kim M, Im J, Han H, Kim J, Lee S, Shin M, Kim H (2015) Landfast sea ice monitoring using multisensor fusion in the Antarctic. GIScience Remote Sens 52:239–256

    Article  Google Scholar 

  • Korea Meteorology Administration (KMA) (2007) Annual climatological report. http://www.kma.go.kr/repositary/sfc/pdf/sfc_ann_2007.pdf. Accessed 21 Jan 2015

  • Li M, Im J, Beier C (2013) Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GISci Remote Sens 50:361–384

    Google Scholar 

  • Li M, Im J, Quackenbush J, Tao L (2014) Forest biomass and carbon stock quantification using airborne LiDAR data: a case study over Huntington Wildlife Forest in the Adirondack Park. IEEE J Sel Top Appl Earth Obs Remote Sens 7:3143–3156

    Article  Google Scholar 

  • Liu Z, Shao Q, Tao J, Chi W (2015) Intra-annual variability of satellite observed surface albedo associated with typical land cover types in China. J Geogr Sci 25(1):35–44

    Article  Google Scholar 

  • Lu Z, Im J, Quackenbush L, Yoo S (2013) Remote sensing based house value estimation using an optimized regional regression model. Photogramm Eng Remote Sens 79:809–820

    Article  Google Scholar 

  • Lu Z, Im J, Rhee J, Hodgson M (2014) Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data. Landsc Urban Plan 130:134–148

    Article  Google Scholar 

  • Mawell A, Strager M, Warner T, Zegre N, Yuill C (2014) Comparison of NAIP orthophotography and RapidEye satellite imagery for mapping of mining and mine reclamation. GIScience Remote Sens 51:301–320

    Article  Google Scholar 

  • Munier S, Aires F, Schlaffer S, Prigent C, Papa F, Maisongrande P, Pan M (2014) Combining data sets of satellite-retrieved products for basin-scale water balance study: 2. Evaluation on the Mississippi Basin and closure correction model. J Phys Res 119:12100–12116

    Google Scholar 

  • National Academy of Agricultural Science, Rural Development Administration (NAAS RDA) (2000) http://soil.rda.go.kr/soil/soilact/characterize.jsp. Accessed 25 Jan 2015

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans Geosci Remote Sens 41:215–229

    Article  Google Scholar 

  • Owe M, de Jeu R, Holmes T (2008) Multisensor historical climatology of satellite-derived global land surface moisture. J Geophys Res Earth Surf 113(F1):F01002. doi:10.1029/2007JF000769

    Article  Google Scholar 

  • Parinussa RM, Yilmaz MT, Anderson MC, Hain CR, Jeu RAM (2014) An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian Peninsula. Hydrol Process 28(18):4865–4876

    Article  Google Scholar 

  • Park S, Im J, Jang E, Rhee J (2016) Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agric For Meteorol 216:157–169

    Article  Google Scholar 

  • Piles M, Camps A, Vall-Ilossera M, Corbella I, Panciera R, Rudiger C, Kerr YH, Walker J (2011) Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Trans Geosci Remote Sens 49:3156–3166

    Article  Google Scholar 

  • Qin J, Yang K, Lu N, Chen Y, Zhao L, Han M (2013) Spatial upscaling of in situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sens Environ 138:1–9

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org/

  • Rawls WJ, Ahuja LR, Brakensiek DL, Shirmohammadi A (1993) Infiltration and soil water movement. In: Maidment DR (ed) Handbook of hydrology, Ch 5. McGraw-Hill, New York, p 1424

    Google Scholar 

  • Ray RL, Jacobs JM, Cosh MH (2010) Landslide susceptibility mapping using downscaled AMSR-E soil moisture: a case study from Cleveland Corral, California, US. Remote Sens Environ 114:2624–2636

    Article  Google Scholar 

  • Reynolds SG (1970) The gravimetric method of soil moisture determination: part I: a study of equipment, and methodological problems. J Hydrol 11:288–300

    Article  Google Scholar 

  • Rhee J, Im J, Park S (2015) Regional drought monitoring based on multi-sensor remote sensing. In: Thenkabail P (ed) Remote sensing of water resources, disasters, and urban studies, remote sensing handbook. Taylor and Francis, Milton Park

    Google Scholar 

  • Rhee J, Park S, Lu Z (2014) Relationship between land cover patterns and surface temperature in urban areas. GIScience Remote Sens 51:521–536

    Article  Google Scholar 

  • Santi E (2010) An application of the SFIM technique to enhance the spatial resolution of spaceborne microwave radiometers. Int J Remote Sens 31(9):2419–2428

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I et al (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99:125–161

    Article  Google Scholar 

  • Sheffield J, Ferguson CR, Troy TJ, Wood EF, McCabe MF (2009) Closing the terrestrial water budget from satellite remote sensing. Geophys Res Lett 36:L07403. doi:10.1029/2009GL037338

    Article  Google Scholar 

  • Smith A, Walker J, Western A, Young R, Ellett K, Pipunic R, Grayson R, Siriwidena L, Chiew F, Richter H (2012) The Murrumbidgee soil moisture monitoring network data set. Water Resour Res. doi:10.1029/2012WR011976

    Google Scholar 

  • Stacy P, Comrie A, Yool S (2012) Modeling valley fever incidence in Arizona using a satellite-derived soil moisture proxy. GISci Remote Sens 49:299–316

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform 8:25–45

    Article  Google Scholar 

  • Sudduth KA, Drummond ST, Kitchen NR (2001) Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Comput Electron Agric 31:239–264

    Article  Google Scholar 

  • Sugathan N, Biju V, Renuka G (2014) Influence of soil moisture content on surface albedo and soil thermal parameters at a tropical station. J Earth Syst Sci 123(5):1115–1128

    Article  Google Scholar 

  • Swain S, Wardlow B, Narumalani S, Tadesse T, Callahan K (2011) Assessment of vegetation response to drought in Nebraska using terra MODIS land surface temperature and normalized difference vegetation index. GISci Remote Sens 48:432–455

    Article  Google Scholar 

  • Tadesse T, Wardlow B, Hayes M, Svoboda M, Brown J (2010) The vegetation outlook (VegOut): a new method for predicting vegetation seasonal greenness. GISci Remote Sens 47:25–52

    Article  Google Scholar 

  • Tenenbaum D, Band L, Kenworthy S, Tague C (2006) Analysis of soil moisture patterns in forested and suburban catchments in Baltimore, Maryland, using high resolution photogrammetric and LiDAR digital elevation datasets. Hydrol Process 20:219–240

    Article  Google Scholar 

  • Torbick N, Corbiere M (2015) Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades. GIScience Remote Sensing 52:746–764

    Article  Google Scholar 

  • Zhang N, Liu C (2014) Simulated water fluxes during the growing season in semiarid grassland ecosystems under severe drought conditions. J Hydrol 512:69–86

    Article  Google Scholar 

  • Zhao L, Yang K, Qin J, Chen Y, Tang W, Lu H, Yang Z (2014) The scale-dependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sens Environ 152:345–355

    Article  Google Scholar 

  • Zreda M, Desilets D, Ferré TPA, Scott RL (2008) Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys Res Lett 35:L21402. doi:10.1029/2008GL035655

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Space Lab Program and Technology Development Program to Solve Climate Changes through the National Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning (Grant: NRF-2013M1A3A3A02042391 and NRF-2012M1A2A2671851). This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2A10004743). The authors would like to express their gratitude to the Global Change Master Directory for providing Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) products. We are also grateful to the Rural Development Administration (RDA) for providing access to soil moisture data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minha Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, J., Park, S., Rhee, J. et al. Downscaling of AMSR-E soil moisture with MODIS products using machine learning approaches. Environ Earth Sci 75, 1120 (2016). https://doi.org/10.1007/s12665-016-5917-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5917-6

Keywords

Navigation