Skip to main content

Advertisement

Log in

Karst spring catchment: an example from Dinaric karst

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Definition of karst spring catchment or basin area and boundaries belongs to one of the greatest problems of karst hydrology and hydrogeology, not adequately solved until now. This paper tries to address main problems in defining this crucial parameter. The theoretical aspect of this issue is discussed in the first two chapters. We have presented the example of the catchment area and boundaries definition for the karst spring Žrnovnica catchment in Dinaric karst. Topographic catchment area of the Žrnovnica Spring is 8.4 km2. The significant discrepancy in size of the hydrological–hydrogeological and topographical catchment is very common characteristic for the springs located in the karst areas. In the case of the Žrnovnica Spring, the hydrogeological catchment is at least seven times larger than topographic. Two following simple hydrological methods are used in order to calculate its hydrologic–hydrogeologic catchment: (1) the relationship between mean annual discharges and annual rainfall falling on the catchment, and (2) the Turc method. It is estimated that hydrogeologic catchment area of the Žrnovnica karst spring is much larger and very probably ranges between 60 and 80 km2. These values represent first rough assessment, which should be confirmed by more detailed interdisciplinary investigations. According to the performed tracing tests, it seems that the catchment spreads on the north-east from the topographic catchment and that the Žrnovnica Spring karst aquifer is fed by groundwater overflow from the neighbouring more abundant karts spring Jadro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andreo B, Ravbar N, Vias JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17(3):749–758

    Article  Google Scholar 

  • Atkinson TC (1986) Soluble rock terrains. In: Fookes P, Vaughan PR (eds) Handbook of engineering geomorphology. Chapman and Hall, New York, pp 241–257

    Google Scholar 

  • Bailly-Comte V, Borrell-Estupina V, Jourde H, Séverin P (2012) A conceptual semidistributed model of the Coulazou River as a tool for assessing surface water - karst groundwater interactions during flood in Mediterranean ephemeral rivers. Water Resour Res 48(9):W09534. doi:10.1029/2010WR010072

    Google Scholar 

  • Binet S, Mudry J, Bertrand C, Guglielmi Y, Cova R (2006) Estimation of quantitative descriptors of northwestern Mediterranean karst behavior: multiparametric study and local validation of the Siou-Blanc massif (Toulon, France). Hydrogeol J 14(7):1107–1121

    Article  Google Scholar 

  • Birk S, Wagner T, Mayaud C (2014) Threshold behavior of karst aquifers: the example of the Lurbach karst system (Austria). Environ Earth Sci 72(5):1349–1356

    Article  Google Scholar 

  • Bonacci O (1987) Karst hydrology with special reference to Dinaric karst. Springer, Berlin

    Book  Google Scholar 

  • Bonacci O (1993) Karst springs hydrographs as indicators of karst aquifers. Hydrol Sci J 38(1–2):51–62

    Article  Google Scholar 

  • Bonacci O (1995) Ground water behaviour in karst: example of the Ombla Spring (Croatia). J Hydrol 165(1–4):113–134

    Article  Google Scholar 

  • Bonacci O (1999) Water circulation in karst and determination of catchment areas: example of the River Zrmanja. Hydrol Sci J 44(3):373–386

    Article  Google Scholar 

  • Bonacci O (2001a) Analysis of the maximum discharge of karst springs. Hydrogeol J 9(4):328–338

    Article  Google Scholar 

  • Bonacci O (2001b) Monthly and annual effective infiltration coefficient in Dinaric karst: example of the Gradole karst spring catchment. Hydrol Sci J 46(2):287–300

    Article  Google Scholar 

  • Bonacci O (2004) Hazards caused by natural and anthropogenic changes of catchment area in karst. Nat Haz Earth Syst Sci 4(5/6):655–661

    Article  Google Scholar 

  • Bonacci O (2015) Karst hydrogeology/hydrology of dinaric chain and isles. Environ Earth Sci (in press). doi:10.1007/s12665-014-3677-8

  • Bonacci O, Roje-Bonacci T (2000) Interpretation of groundwater level monitoring results in karst aquifer: examples from the Dinaric karst. Hydrol Process 14(14):2423–2438

    Article  Google Scholar 

  • Bonacci O, Kerovec M, Roje-Bonacci T, Mrakovčić M, Plenković-Moraj A (1998) Ecologically acceptable flows definition for the Žrnovnica River (Croatia). Regul Rivers Res Manag 14(3):245–256

    Article  Google Scholar 

  • Bonacci O, Jukić D, Ljubenkov I (2006) Definition of catchment area in karst: case of the rivers Krčić and Krka, Croatia. Hydrol Sci J 51(4):682–699

    Article  Google Scholar 

  • Bonacci O, Željković I, Galić A (2013) Karst rivers’ particularity: an example from Dinaric karst (Croatia/Bosnia and Herzegovina). Environ Earth Sci 70(2):963–974

    Article  Google Scholar 

  • Denić-Jukić V, Jukić D (2002) Kompozitne kernel funkcije i njihova primjena na izvor Jadra. Hrvatske Vode 10(39):107–126 (Croatian)

    Google Scholar 

  • Denić-Jukić V, Jukić D, Vego G (2007) Karst springs discharge modelling by using the composite transfer functions: example of the Žrnovnica and Jadro Springs. In: Proceedings of the XXXV Congress of the International Association of Hydrogeologists “Groundwater and Ecosystems”

  • Fabre P, Perrineau A (2001) Mise en évidence du phénomène du «renard»: exemple des crues exceptionnelles des sources du Boulet-Blagour (Causse de Martel, Lot). Karstologia 38:41–48

    Google Scholar 

  • Finger D, Hugentobler A, Huss M, Voinesco A, Wernli H, Fischer D, Weber E, Jeannin P-Y, Kauzlaric M, Wirz A, Vennemann T, Hüsler F, Schädler B, Weingartner R (2013) Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability. Hydrol Earth Syst Sci 17(8):3261–3277

    Article  Google Scholar 

  • Fiorillo F, Pagnozzi M (2013) The role of endorheic areas on recharge processes of karst massifs. In: International Symposium on Hierarchical Flow Systems in Karst Regions, September 2013, Budapest, Abstract Volume, p. 65

  • Fiorillo F, Pagnozzi M, Ventafridda G (2014) A model to simulate recharge processes of karst massifs. Hydrol Process doi:10.1002/hyp.10353

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester

    Book  Google Scholar 

  • Fritz F (1981) Hidrogeologija zaleđa Splita. Krš Jugoslavije 10(5):97–118 (Croatian)

    Google Scholar 

  • Gunn J (1981) Hydrological processes in karst depressions. Z Geomorph N F 25(3):313–331

    Google Scholar 

  • Gunn J (1983) Point-recharge of limestone aquifer - A model from New Zealand karst. J Hydrol 61:19–29

    Article  Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange JM, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:1–12

    Article  Google Scholar 

  • Lehmann O (1932) Die Hydrographie des Karstes. Enz Erdkd, 6b, Leipzig-Wien (German)

  • Leibundgut C, Maloszewski P, Kulls C (2009) Tracers in hydrology. Willey, Chichester

    Book  Google Scholar 

  • Mayaud C, Wagner T, Benischke R, Birk S (2014) Single event time series anayseis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J Hydrol 511:628–639

    Article  Google Scholar 

  • Perrin J, Jeannin PY, Lavanchy Y (2000) The catchment of the Brassus karst spring (Swiss Jura): a synthesis of the tracer tests. Ecologae Geol Helveticae 93(1):03–101

    Google Scholar 

  • Quinlan JF, Ewers RO (1989) Subsurface drainage in the Mammoth Cave area. In: White WB, White EL (eds) Karst hydrology concepts from the Mammoth Cave area. Van Nostrand Reinhold, New York, pp 65–103

    Chapter  Google Scholar 

  • Ravbar N (2013) Variability of groundwater flow and transport processes in karst under different hydrologic conditions. Acta Carsologica 42(2–3):327–338

    Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovenian karst catchment. Hydrogeol J 17(3):725–733

    Article  Google Scholar 

  • Ravbar N, Kovačič G (2010) Characterisation of karst areas using multiple geo-science techniques, a case study from SW Slovenia. Acta Carsologica 39(1):51–60

    Google Scholar 

  • Ravbar N, Barberá JA, Petrič M, Kogovšek J, Andreo B (2012) The study of hydrodynamic behaviour of a complex karst system under low-flow conditions using natural and artificial tracers (spring of the Unica River, SW Slovenia). Environ Earth Sci 65(8):2259–2272

    Article  Google Scholar 

  • Ray J (2001) Spatial interpretation of karst drainage basins. In: Beck BF, Herring JG (eds) Geotechnical and environmental applications of karst geology and hydrology, Proceedings of the Eighth Multidisciplinary Conference on Sinkholes and the Environmental and Engineering Impacts of Karst, April 1–4, 2001, Louisville, Kentucky. Balkema Publishers, Rotterdam, pp 235–244

    Google Scholar 

  • Roje-Bonacci T, Bonacci O (2013) The possible negative consequences of underground dam and reservoir construction and operation in coastal karst areas: an example of the hydro-electric power plant (HEPP) Ombla near Dubrovnik (Croatia). Nat Hazards Earth Syst Sci 13(8):2041–2052

    Article  Google Scholar 

  • Savenije HHG (1996) The runoff coefficient as the key to moisture recycling. J Hydrol 176:219–225

    Article  Google Scholar 

  • Soulios G (1985) Recherches sur l’unité des systèmes aquifères karstiques d’après des exemples du karst Hellénique. J Hydrol 81(3–4):333–354 (French)

    Article  Google Scholar 

  • Soulios G (1991) Contribution à l’étude des courbes de récession des sources karstiques: Exemples du pays Hellénique. J Hydrol 124(1–2):29–42 (French)

    Article  Google Scholar 

  • Terzić J, Marković T, Lukač Reberski J (2014) Hydrogeological properties of a complex Dinaric karst catchment: Miljacka Spring case study. Environ Earth Sci 72(4):1129–1142

    Article  Google Scholar 

  • Turc L (1954) Le bilan d’eau et des sols; relation entre les précipitations, l’évaporation et l’écoulement. Troisièmes Journées de l’Hydraulique, Alger, pp 36-43 (French)

  • Turc L (1961) Evaluation de besoins d’eau d’irrigation; évaporation potentielle. Ann Agr 12:13–49 (French)

    Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2–3):85–105

    Article  Google Scholar 

  • Worthington SRH, Ford DC (2009) Self-organized permeability in carbonate aquifers. Ground Water 37(3):326–336

    Article  Google Scholar 

  • Wu J, Zhang R, Yang J (1996) Analysis of rainfall-runoff relationship. J Hydrol 177:143–160

    Article  Google Scholar 

  • Zehe E, Sivapalan M (2009) Threshold behaviour in hydrological systems as (human) geo-ecosystems: manifestations, controls, implications. Hydrol Earth Syst Sci 13:1273–1297

    Article  Google Scholar 

  • Žugaj R (1995) Regionalna hidrološka analiza u kršu Hrvatske. Hrvatsko Hidrološko Društvo, Zagreb (Croatian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ognjen Bonacci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonacci, O., Andrić, I. Karst spring catchment: an example from Dinaric karst. Environ Earth Sci 74, 6211–6223 (2015). https://doi.org/10.1007/s12665-015-4644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4644-8

Keywords

Navigation