Skip to main content

Advertisement

Log in

Biomass Residues in Brazil: Availability and Potential Uses

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Agroindustrial and forestry residues, which are by-products of key industrial and economical activities, stand out as potential raw materials for the production of renewable fuels, chemicals and energy. The use of wastes is advantageous as their availability is not hindered by a requirement for arable land for the production of food and feed. In addition, waste utilization prevents its accumulation, which is of great environmental concern due to its potential for contamination of rivers and underground water. In Brazil, the agroindustry of corn (13767400 ha), sugarcane (7080920 ha), rice (2890930 ha), cassava (1894460 ha), wheat (1853220 ha), citrus (930591 ha), coconut (283205 ha), and grass (140000 ha) collectively occupies an area of 28840726 ha (FAOSTAT, http://www.faostat.fao.org/site/567/default.aspx#ancor) and generates 597 million tons of residue per year. By itself, this scale of operation calls for new solutions aiming for the appropriate utilization of these valuable resources. However, innovative dealings must be environmentally and economically acceptable and, most importantly, have social meaning. Indeed, great social benefits could draw from novel year-round activities as alternatives for the typical seasonal jobs in agroindustry. Considering the production of biomass ethanol, the abundance of feedstock near the site of processing must be taken into account, as low-density biomass involves significant handling and transportation costs. Within this context, the crushed stalk of sugar cane (bagasse) and straw are obvious choices, although bagasse is often burned for the production of steam (heat) and power/electricity in sugar-ethanol mills and important amounts of straw are needed to keep the soil nutrients balance. Other agricultural by-products of importance in Brazil, such as corn straw, wheat straw, rice straw and rice hulls, grass and forestry materials and residues from citrus, coconut and cassava processing, also deserve attention as local feedstock for the development of new and profitable activities. As each type of feedstock demands the development of tailor-made technology, the diversity of the aforementioned raw materials could allow for new solutions for the production of chemicals, fuels and energy in accordance with the local availability of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAOSTAT. http://www.faostat.fao.org/site/567/default.aspx#ancor. Accessed October 2009

  2. Sims, R., Taylor, M., Saddler, J., Mabee, W.: From 1st to 2nd generation biofuel technologies. OECD/IEA (2008)

  3. França, R., Nogueira, L.A.H.: Setenta questões para entender o etanol. Revista Veja 2052, 104–114 (2008)

    Google Scholar 

  4. Junginger, M., Bolkesjø, T., Bradley, D., Dolzan, P., Faaij, A., Heinimöe, J., Hektorf, B., Leistadg, O., Lingh, E., Perry, M., Piacente, E., Rosillo-Calle, F., Ryckmansj, Y., Schouwenberg, P., Solberg, B., Trømborg, E., Walter, A., Wit, M.: Developments in international bioenergy trade. Biomass Bioenergy 32, 717–729 (2008)

    Article  Google Scholar 

  5. Qureshi, N., Saha, B.C., Hector, R.E., Hughes, S.R., Cotta, M.A.: Butanol production from wheat straw by simultaneous saccharification and fermentation using clostridium beijerinckii: PartiI–Batch fermentation. Biomass Bioenergy 32, 168–175 (2008)

    Article  Google Scholar 

  6. Goldemberg, J.: The Brazilian biofuel industry. Biotechnol. Biofuels 6, 1–7 (2008)

    Google Scholar 

  7. Lora, E.S., Andrade, R.V.: Biomass as energy source in Brazil. Renew. Sust. Energ. Rev. 13, 777–788 (2009)

    Article  Google Scholar 

  8. Bon, E.P.S., Ferrara, M.A.: Bioethanol production via enzymatic hydrolysis of cellulosic biomass. Fao symposium on the role of agricultural biotechnologies for production of bioenergy in developing countries. In: Food and Agriculture Organization of the United Nations FAO Symposium—Roma (2008)

  9. Empresa Brasileira de Pesquisa Energética. www.epe.gov.br. Accessed December 2008

  10. Instituto Brasileiro de Geografia Estatística. www.ibge.gov.br. Accessed October 2009

  11. Nogueira, L.A.H.: Co-products of sugarcane bioethanol. In: BNDES, CGEE (eds.) Sugarcane-based bioethanol: energy for sustainable development. Rio de Janeiro, Brazil (2008)

    Google Scholar 

  12. Oliveira et al. http://www.revistapesquisa.fapesp.br/Edição 154 (1999). Accessed October 2009

  13. Brazilian Federal Law 2661 and State of São Paulo Law Nº 11241 dated 19/09/2002

  14. Saha, B.C., Bothast, R.J.: Pretreatment and enzymatic saccharification of corn fiber. Appl. Biochem. Biotechnol. 76, 65–77 (2007)

    Article  Google Scholar 

  15. Osborn, D., Chen, L.F.: Die Starke. Starch. 36, 393 (1984)

    Article  Google Scholar 

  16. Grohmann, K., Bothast, R.J.: Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32, 405 (1997)

    Article  Google Scholar 

  17. Krishnan, M.S., Xia, Y., Ho, N.W.Y., Tsao, G.T.: Fuel ethanol production from lignocellulosic sugars: studies using genetically engineered Sacharomyce yeast. ACS Symp. Ser. 666, 74 (1997)

    Article  Google Scholar 

  18. Moniruzzaman, M., Dien, B.S., Skory, C.D., Chen, Z.D., Hespell, R.B., Ho, N.W.Y., Dale, B.E., Bothast, R.J.: Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J. Microbiol. Biotechnol. 13, 341 (1997)

    Article  Google Scholar 

  19. Gong C.S., Cao N.J., Du, J., Tsao, G.T.: Ethanol production from renewable resources. Advances in biochemical engineering/biotechnology, vol. 65. Managing Editor: Th. Scheper. Springer-Verlag Berlin Heidelberg, pp 207–241 (1999)

  20. Tiffany, D.G., Eidman, V.R.: Factors associated with success of fuel ethanol producers. Staff Paper Series P03-7. University of Minnesota, USA. 54 pp. (2003)

  21. Sanchez, O.J., Cardona, C.A.: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99, 5270–5295 (2008)

    Article  Google Scholar 

  22. Aden, A. Biochemical Production of Ethanol from Corn Stover (May 2008), 2007 State of Technology Model, Technical Report NREL/TP-510-43205 (2007)

  23. Bose, M.L.V., Martins Filho, J.C.O.: Papel dos resíduos agro-industriais na alimentação de ruminantes. Informe agropecuário 10(119), 3–7 (1984)

    Google Scholar 

  24. Klingenfeld, D., Kennedy H.: Corn stover as a bioenergy feedstock: identifying and overcoming barriers for corn stover harvest, storage, and transport. School Policy Analysis Exercise (2008)

  25. Glassner D.A., Hettenhaus J.R., Schechinger T.M.: Corn stover collection project. BioEnergy 98: Expanding BioEnergy Partnerships (1998)

  26. Chen, M., Xia, L., Xue, P.: Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int. Biodeteriorat. Biodegrad. 59, 85–89 (2007)

    Article  Google Scholar 

  27. Chen, M., Zhao, J., Xia, L.: Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym. 71, 411–415 (2008)

    Article  Google Scholar 

  28. Juhász, T., Szengyel, Z., Réczey, K., Siika-Aho, M., Viikari, L.: Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem. 40, 3519–3525 (2005)

    Article  Google Scholar 

  29. Selig, M.J., Knoshaug, E.P., Adney, W.S., Himmel, M.E., Decker, S.R.: Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. Bioresour. Technol. 99, 4997–5005 (2008)

    Article  Google Scholar 

  30. Lopez-Ulibarri, R., Hall, G.M.: Saccharification of cassava flour starch in a hollow-fiber membrane reactor. Enzyme. Microb.Technol. 21, 398–404 (1997)

    Article  Google Scholar 

  31. Sriroth, K., Lamchaiyaphum, B., Piyachomkwan, K.: Present situation and future potential of cassava in Thailand. http://www.cassava.org/doc/presentsituation2.pdf (2007)

  32. Dai, D., Hu, Z., Pu, G., Li, H., Wang, C.: Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers. Manag. 47, 1686–1699 (2006)

    Article  Google Scholar 

  33. Raupp, D.S., Moreira, S.S., Banzatto, D.A., Sgarbieri, V.C.: Composition, physiological and nutritive properties of an insoluble high fiber flour obtained from cassava fibrous waste - Ciência e Tecnologia de Alimentos 19(2), (1999)

  34. Sriroth, K., Chollakup, R., Chotineeranat, S., Piyachomkwan, K., Oates, C.G.: Processing of cassava waste for improved biomass utilization. Bioresour. Technol. 71, 63–69 (2000)

    Article  Google Scholar 

  35. Bon, E. P.S., Monteiro Jr., N.: Hidrólise de amido por processo fermentativo para a produção de xaropes de glicose. Revista de Propriedade Industrial nº 1744- 08 de junho de 2004. Patent number: PI0204544-3

  36. Akpan, I., Uraih, N., Obuekwe, C.O., Ikenebomeh, M.J.: Production of ethanol from cassava waste. Acta Biotechnol. 8, 39–45 (2004)

    Article  Google Scholar 

  37. Empresa Brasileira de Pesquisa Agropecuária www.embrapa.br

  38. Pandey, C.A., Soccol, C.R., Nigam, P., Soccol, V.T., Vandenberghe, L.P.S., Mohan, R.: Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresour. Technol. 74, 81–87 (2000)

    Article  Google Scholar 

  39. Bramorski, A., Soccol, C.R., Christen, P., Revah, S.: Fruity aroma production by Ceratocystis fimbriata in solid cultures from agro-industrial wastes. Rev. Microbiol. 29(3), 208–212 (1998)

    Article  Google Scholar 

  40. Medeiros, B.P.A.: Production and composition of aromatic volatile compounds by Kluyveromyces marxianus in solid state fermentation. Master’s Thesis, Federal University of Parana, Curitiba, Brazil (1998)

  41. Soccol, C.R., Stertz, S.C., Raimbault, M., Pinheiro, L.I.: Biotransformation of solid waste from cassava starch production by Rhizopus in solid state fermentation, 2. Optimization of the culture conditions and growth kinetics. Arch. Biol. Technol. 38, 1311–1318 (1995)

    Google Scholar 

  42. Beux, M.R., Soccol, C.R., Marin, B., Tonial, T., Roussos, S.: Cultivation of Lentinus edodes on the mixture of cassava bagasse and sugarcane bagasse. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (eds.) Advances in Solid State Fermentation, pp. 499–511. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  43. Barbosa, M.C.S., Soccol, C.R., Marin, B., Todeschini, M.L., Tonial, T., Flores, V.: Prospect for production of Pleurotus sajor-caju from cassava fibrous waste. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (eds.) Advances in Solid State Fermentation, pp. 513–525. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  44. Kolicheski, M.B., Soccol, C.R., Marin, B., Medeiros, E., Raimbault, M.: Citric acid production on three cellulosic supports in solid state fermentation. In: Roussos, S., Lonsane, B.K., Raimbault, M., Viniegra-Gonzalez, G. (eds.) Advances in Solid State Fermentation, pp. 447–460. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  45. Shankaranand, V.S., Lonsane, B.K.: Citric acid by solid state fermentation a case study for commercial exploitation. In: Pandey, A. (ed.) Solid state fermentation, pp. 149–152. Wiley Eastern, New Delhi, India (1994)

    Google Scholar 

  46. Vandenberghe, L.P.S., Soccol, C.R., Pandey, A., Lebeault, J.M.: Solid state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technol. (in press)

  47. Vandenberghe, L.P.S, Soccol, C.R., Carta, F.S., Lebeault, J.-M., Milcent, P.F., Machado, L.: Enzymatic hydrolysis of liquid and solid wastes of cassava root industry for production of metabolites by fermentation. COBEQ 98, Porto Alegre, Brazil (1998)

  48. Carta, F.S., Soccol, C.R., Machado, L., Machado, C.M.M.: Prospect of using cassava bagasse waste for producing fumaric acid. J. Sci. Ind. Res. 57(10–11), 644–649 (1998)

    Google Scholar 

  49. Carta, F.S., Soccol, C.R., Ramos, L.P., Fontana, J.D.: Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresour. Technol. 68, 23–28 (1999)

    Article  Google Scholar 

  50. Vandenberghe, L.P.S., Soccol, C.R., Lebeault, J.M., Krieger, N.: Cassava wastes hydrolysate an alternative carbon source for citric acid production by Candida lipolytica. Paper presented in Int. Congr. Biotech. 98, Portugal (1998)

  51. Abia, A.A., Horsfall Jr, M.: Didi O.: The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresour. Technol. 90, 345–348 (2003)

    Article  Google Scholar 

  52. United States Department of Agriculture USDA. www.ers.usda.gov/briefing/wheat/trade.htm

  53. Advanced Biofuels USA. www.advancedbiofuelsusa.info/advances-in-wheat-based-biofuel-in-england. October 2009

  54. Companhia Nacional de Abastecimento. www.conab.gov.br. October 2009

  55. Palmarola-Adrados, B., Chotěborská, P., Galbe, M., Zacchi, G.: Ethanol production from non-starch carbohydrates of wheat bran. Bioresour. Technol. 96(7), 843–850 (2005)

    Article  Google Scholar 

  56. www.raisis.ind.br. Accessed October 2009

  57. Bampidis, V.A., Robinson, P.H.: Citrus by-products as ruminant feeds: a review. Animal Feed Sci. Technol. 128, 175–217 (2006)

    Article  Google Scholar 

  58. Marín, F.R., Soler-Rivas, C., Benavente-García, O., Castillo, J., Pérez-Alvarez, J.A.: By-products from different citrus processes as a source of customized functional fibres. Food Chem. 100, 736–741 (2007)

    Article  Google Scholar 

  59. Stewart, D., Widmer, W., Grohmann, K., Wilkins, M.: Ethanol production from solid citrus processing wastes. http://www.faqs.org/patents/app/20080213849#ixzz0VAljqu3F. Accessed October 2009

  60. Van Heerden, I., Cronjé, C., Swart, S.H., Kotzé, J.M.: Microbial, chemical and physical aspects of citrus waste composting. Bioresour. Technol. 81, 71–76 (2002)

    Article  Google Scholar 

  61. Tripodo, M.M., Lanuzza, F., Micali, G., Coppolino, R., Nucita, F.: Citrus waste recovery: a new environmentally friendly procedure to obtain animal feed. Bioresour. Technol. 91, 111–115 (2004)

    Article  Google Scholar 

  62. Duetz, W.A., Bouwmeester, H., Van Beilen, J.B., Witholt, B.: Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl. Microbiol. Biotechnol. 61, 269–277 (2003)

    Google Scholar 

  63. Ferrara, M.A., Lacerda, P.S.B., Freitas, A., Almeida, D.S., Bon, E.P.S.: Limonene bioconversion by Yarrowia lipolytica. In: 14th European Congress on Biotechnology, Barcelona. New Biotechnology, 2009. v. 25S. p. 124 (2009)

  64. Wilkins, M.R., Widmer, W.W., Grohmann, K., Cameron, R.G.: Hydrolysis of grapefruit peel waste with cellulase and pectinase enzymes. Bioresour. Technol. 98, 1596–1601 (2007)

    Article  Google Scholar 

  65. Centro de debate y market place de biocombustibles. CCe. http://www.biodieselspain.com/2008/11/27/primera-planta-del-mundo-que-fabrica-etanol-con-residuos-citricos/. Accessed October 2009

  66. Tools for saving our planet togheter. http://www.supergreenme.com/go-green-environment-eco:Ethanol-from-Citrus-Waste. Accessed October 2009)

  67. Bezerra, F.C., ROSA, M.F.: Utilização do pó da casca de coco verde como substrato agrícola para produção de mudas de alface. Comunicado Técnico 71. Embrapa. Fortaleza (2002)

  68. Carrijo, O.A., Liz, R.S. de, Makishima, N.: Fibra de casca de coco verde como substrato agrícola. Horticultura Brasileira.Brasília.v20, n.04. Dez. pp. 533–535 (2002)

  69. Deflor. Soluções ambientais definitivas. Cátalago de produtos e serviços.2006.34p[S.I,s.n]

  70. Ferreira, J.M.S., Warwick, D.R.N, Siqueira, L.A.: A Cultura do coqueiro no Brasil. 2 ed. Brasília. Embrapa. 292 pp. (1988)

  71. Leite, S.G.F., Rosa, M.F., Furtado, A.A.L.: Aproveitamento dos resíduos agroindustriais: produção de enzimas a partir da casca de coco verde. Boletim CEPPA 19(1), 33–42 (2001). Curitiba

    Google Scholar 

  72. Ministério da Agricultura, Pecuária e Abastecimento: Coco Produção. Frutas do Brasil. Embrapa. Brasília,106 pc. (2003)

  73. Jank, L., do Valle, C.B., Carvalho, P., de, F.: New grasses and legumes: advances and perspectives for the tropical zones of Latin America. In: Reynolds, S.G., Frame, J. (eds.) FAO 2005 Grasslands: Developments, Opportunities, Perspectives, pp. 55–79. Science Publishers, Inc, Plymouth, UK (2005)

    Google Scholar 

  74. Andrade, J.B. Subprojeto: Produção de Biomassa pelo Capim Elefante. Área: Energia – Fontes Alternativas – Biomassa Rede Proposta: PIB – Projeto Integrado Biomassa Proponente: Instituto de Zootécnica Interessado: FINEP/RECOPE. Junho/(1997)

  75. Carvalho, L.A.: Pennisetum purpureum, Shumacher – revisão. Coronel Pacheco: Embrapa–Gado de Leite, 1985, 86 pp. (Boletim técnico, 10)

  76. Mazzarella, V. Fuel alternative: Brazil to produce power from grass—July 24, 2007 http://news.mongabay.com/bioenergy/2007/10/brazilian-scientists-identify-elephant.html

  77. Stambuk, B.U., Eleutherio, E.C.A., Flores-Pardo, L.M., Maior, A.M.S., Bon, E.P.S.: Brazilian potencial for biomass ethanol: challenge of using hexose and pentose co-fermenting yeast strains. J. Sci. Ind. Res. 67, 918–926 (2008)

    Google Scholar 

  78. Brito, E.O.: Estimativa da produção de resíduos na indústria brasileira de serraria e laminação de madeira. Revista da Madeira 4, 34–39 (1995)

    Google Scholar 

  79. Chalico, T.A.: Feedstock production in Latin America. Biofuels assessment on technical opportunities and research needs for Latin America. BioTop Project No: FP7-213320. January 2009

  80. O verdadeiro portal do biodiesel. Potencial energético do biodiesel. http://www.biodieselbr.com/energia/residuo/index.htm. Accessed October 2009

  81. Duff, S.J.B., Murray, W.D.: Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55, 1–33 (1996)

    Article  Google Scholar 

  82. Champagne, P.: Feasibility of producing bio-ethanol from waste residues: a Canadian perspective. Feasibility of producing bio-ethanol from waste residues in Canada Resources. Conserv. Recycling 50, 211–230 (2007)

    Article  Google Scholar 

  83. The saab network. Sweden leads european bioethanol market. http://www.saabnet.com/tsn/press/060509B.html. Accessed October 2009

  84. Instituto FNP. www.fnp.com.br/prodserv/anuarios/index2.php

  85. União da Indústria de cana-de-açúcar. www.unica.com.br

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elba P. S. Bon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira-Leitão, V., Gottschalk, L.M.F., Ferrara, M.A. et al. Biomass Residues in Brazil: Availability and Potential Uses. Waste Biomass Valor 1, 65–76 (2010). https://doi.org/10.1007/s12649-010-9008-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9008-8

Keywords

Navigation