Skip to main content

Advertisement

Log in

Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Direct electro-reduction of solid compounds in molten salts is a simple and straightforward electrolytic metallurgical method, which outperforms traditional pyrometallurgical methods such as carbothermic and metallothermic reductions in terms of economic viability, energy efficiency and carbon footprint. To better highlight the features of the direct electro-reduction of solid compounds in molten salts in extraction of rare metals, the scope of this paper is focused on the know-how of the cathodic process of the direct electro-reduction of solid compounds in molten salts in extraction of rare refractory metals including Ti, Zr, Hf, V, Nb, Ta, Mo and W, and rare disperse metals including Ga and Ge. In line with an introduction of the basic concept of the method, the characteristics of reaction paths in different systems are summarized and the corresponding strategy on tailoring energy efficiency and microstructure of electrolytic products are rationalized. The economic competence of the method might be enhanced by extending the method to controllable production of rare metals with high added values, well-defined microstructure and intriguing functionality.

Graphical Abstract

Direct electro-reduction of solid compounds in high-temperature molten salts emerges as an affordable, green, and controllable preparation of rare metals, in which, reaction paths show a significant influence on energy efficiency, composition/microstructure of electrolytic products and the economic competence of the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ullmann F, Gerhartz W, Yamamoto Y, Campbell F, Pfefferkorn R, Rounsaville J. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH; 1996. 1.

    Google Scholar 

  2. Bard AJ, Faulkner LR. Electrochemical Methods-Fundamentals and Applications. 2nd ed. New York: Wiley; 2001. 1.

    Google Scholar 

  3. Grjotheim K, Krohn C, Malinovsky M, Matiasovsky K, Thonstad J. Aluminum Electrolysis. The Chemistry of the Hall–Heroult Process. Dusseldorf Aluminium-Verlag GmbH, 1977. 350.

  4. Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.

    Article  Google Scholar 

  5. Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev. 2014;43(10):3215.

    Article  Google Scholar 

  6. Chen GZ, Gordo E, Fray DJ. Direct electrolytic preparation of chromium powder. Metall Mater Trans B. 2004;35(2):223.

    Article  Google Scholar 

  7. Jiang K, Hu XH, Ma M, Wang DH, Qiu GH, Jin XB, Chen GZ. “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2. Angew Chem Int Ed. 2006;45(3):428.

    Article  Google Scholar 

  8. Suzuki RO, Aizawa M, Ono K. Calcium-deoxidation of niobium and titanium in Ca-saturated CaCl2 molten salt. J Alloys Compd. 1999;288(1):173.

    Article  Google Scholar 

  9. Ono K, Suzuki RO. A new concept for producing Ti sponge: calciothermic reduction. JOM. 2002;54(2):59.

    Article  Google Scholar 

  10. Suzuki RO, Inoue S. Calciothermic reduction of titanium oxide in molten CaCl2. Metall Mater Trans B. 2003;34(3):277.

    Article  Google Scholar 

  11. Choi EY, Jeong SM. Electrochemical processing of spent nuclear fuels: an overview of oxide reduction in pyroprocessing technology. Prog Nat Sci. 2015;25:572.

    Article  Google Scholar 

  12. Wang DH, Jin XB, Chen GZ. Solid state reactions: an electrochemical approach in molten salts. Ann Rep Sect C (Phys Chem). 2008;104:89.

    Google Scholar 

  13. Abdelkader AM, Kilby KT, Cox A, Fray DJ. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev. 2013;113(5):2863.

    Article  Google Scholar 

  14. Wang DH, Xiao W. 9—Inert anode development for high-temperature molten salts. In: Lantelme F, Groult H, editors. Molten Salts Chemistry. Oxford: Elsevier; 2013. 171.

  15. Jin XB, Gao P, Wang DH, Hu XH, Chen GZ. Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride. Angew Chem Int Ed. 2004;43(116):733.

    Article  Google Scholar 

  16. Li W, Jin XB, Huang FL, Chen GZ. Metal-to-oxide molar volume ratio: the overlooked barrier to solid-state electroreduction and a “green” bypass through recyclable NH4HCO3. Angew Chem Int Ed. 2010;49(18):3203.

    Article  Google Scholar 

  17. Xiao W, Jin XB, Deng Y, Wang DH, Hu XH, Chen GZ. Electrochemically driven three-phase interlines into insulator compounds: electroreduction of solid SiO2 in molten CaCl2. ChemPhysChem. 2006;7(8):1750.

    Article  Google Scholar 

  18. Ma M, Wang DH, Hu XH, Jin XB, Chen GZ. A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys. Chem Eur J. 2006;12(19):5075.

    Article  Google Scholar 

  19. Zhu Y, Ma M, Wang DH, Jiang K, Hu XH, Jin XB, Chen GZ. Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy. Chin Sci Bull. 2006;51(20):2535.

    Article  Google Scholar 

  20. Peng JJ, Chen HL, Jin XB, Wang T, Wang DH, Chen GZ. Phase-tunable fabrication of consolidated (alpha plus beta)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides. Chem Mater. 2009;21(21):5187.

    Article  Google Scholar 

  21. Peng JJ, Zhu Y, Wang DH, Jin XB, Chen GZ. Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts. J Mater Chem. 2009;19(18):2803.

    Article  Google Scholar 

  22. Peng JJ, Jiang K, Xiao W, Wang DH, Jin XB, Chen GZ. Electrochemical conversion of oxide precursors to consolidated Zr and Zr–2.5Nb tubes. Chem Mater. 2008;20(23):7274.

    Article  Google Scholar 

  23. Hu D, Xiao W, Chen GZ. Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts. Metall Mater Trans B. 2013;44(2):272.

    Article  Google Scholar 

  24. Zou XL, Lu XG, Zhou ZF, Xiao W, Zhong QD, Li CH, Ding WZ. Electrochemical extraction of Ti5Si3 silicide from multicomponent Ti/Si-containing metal oxide compounds in molten salt. J Mater Chem A. 2014;2(20):7421.

    Article  Google Scholar 

  25. Tang DD, Xiao W, Tian LF, Wang DH. Electrosynthesis of Ti2CO n from TiO2/C composite in molten CaCl2: effect of electrolysis voltage and duration. J Electrochem Soc. 2013;160(11):F1192.

    Article  Google Scholar 

  26. Abdelkader AM, Fray DJ. Electrochemical synthesis of hafnium carbide powder in molten chloride bath and its densification. J Eur Ceram Soc. 2012;32(16):4481.

    Article  Google Scholar 

  27. Abdelkader AM, Fray DJ. Electro-deoxidation of hafnium dioxide and niobia-doped hafnium dioxide in molten calcium chloride. Electrochim Acta. 2012;64:10.

    Article  Google Scholar 

  28. Wang BX, Bhagat R, Lan XZ, Dashwood RJ. Production of Ni–35Ti–15Hf alloy via the FFC Cambridge process. J Electrochem Soc. 2011;158(10):D595.

    Article  Google Scholar 

  29. Jiao SQ, Zhang LL, Zhu HM, Fray DJ. Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode. Electrochim Acta. 2010;55(23):7016.

    Article  Google Scholar 

  30. Abdelkader AM, Fray DJ. Direct electrochemical preparation of Nb–10Hf–1Ti alloy. Electrochim Acta. 2010;55(8):2924.

    Article  Google Scholar 

  31. Bhagat R, Jackson M, Inman D, Dashwood R. The production of Ti–Mo alloys from mixed oxide precursors via the FFC cambridge process. J Electrochem Soc. 2008;155(6):E63.

    Article  Google Scholar 

  32. Dring K, Bhagat R, Jackson M, Dashwood R, Inman D. Direct electrochemical production of Ti–10W alloys from mixed oxide preform precursors. J Alloys Compd. 2006;419(1):103.

    Article  Google Scholar 

  33. Yan XY, Fray DJ. Electrosynthesis of NbTi and Nb3Sn superconductors from oxide precursors in CaCl2-based melts. Adv Funct Mater. 2005;15(11):1757.

    Article  Google Scholar 

  34. Wu T, Jin XB, Xiao W, Hu XH, Wang DH, Chen GZ. Thin pellets: fast electrochemical preparation of capacitor tantalum powders. Chem Mater. 2007;19(2):153.

    Article  Google Scholar 

  35. Wu T, Xiao W, Jin XB, Liu C, Wang DH, Chen GZ. Computer-aided control of electrolysis of solid Nb2O5 in molten CaCl2. Phys Chem Chem Phys. 2008;10(13):1809.

    Article  Google Scholar 

  36. Cai ZF, Zhang ZM, Guo ZC, Tang HQ. Direct electrochemical reduction of solid vanadium oxide to metal vanadium at low temperature in molten CaCl2–NaCl. Int J Miner Metall Mater. 2012;19(6):499.

    Article  Google Scholar 

  37. Lang XC, Xie HW, Zhai YC, Zou XY. Preparation and the reaction mechanism of vanadium carbide by electrochemical reduction of the cathode self-sintered in molten CaCl2 salt. Rare Metal Mater Eng. 2014;43(10):2515.

    Google Scholar 

  38. Meng FK, Lu HM. Direct electrochemical preparation of NbSi alloys from mixed oxide preform precursors. Adv Eng Mater. 2009;11(3):198.

    Article  Google Scholar 

  39. Wang T, Gao HP, Jin XB, Chen HL, Peng JJ, Chen GZ. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl. Electrochem Commun. 2011;13(12):1492.

    Article  Google Scholar 

  40. Li GM, Wang DH, Jin XB, Chen GZ. Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission. Electrochem Commun. 2007;9(8):1951.

    Article  Google Scholar 

  41. Gao HP, Tan MS, Rong LB, Wang ZY, Peng JJ, Jin XB, Chen GZ. Preparation of Mo nanopowders through electroreduction of solid MoS2 in molten KCl–NaCl. Phys Chem Chem Phys. 2014;16(36):19514.

    Article  Google Scholar 

  42. Tang DD, Xiao W, Yin HY, Tian LF, Wang DH. Production of fine tungsten powder by electrolytic reduction of solid CaWO4 in molten salt. J Electrochem Soc. 2012;159(6):E139.

    Article  Google Scholar 

  43. Erdogan M, Karakaya I. Electrochemical reduction of tungsten compounds to produce tungsten powder. Metall Mater Trans B. 2010;41(4):798.

    Article  Google Scholar 

  44. Erdogan M, Karakaya I. On the electrochemical reduction mechanism of CaWO4 to W powder. Metall Mater Trans B. 2012;43(4):667.

    Article  Google Scholar 

  45. Ge XL, Wang XD, Seetharaman S. Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl. Acta Electrochim. 2009;54(18):4397.

    Article  Google Scholar 

  46. Muir Wood AJ, Copcutt RC, Chen GZ, Fray DJ. Electrochemical fabrication of nickel manganese gallium alloy powder. Adv Eng Mater. 2003;5(9):650.

    Article  Google Scholar 

  47. Xiao W, Jin XB, Chen GZ. Up-scalable and controllable electrolytic production of photo-responsive nanostructured silicon. J Mater Chem A. 2013;1(35):10243.

    Article  Google Scholar 

  48. Xiao W, Jin XB, Deng Y, Wang DH, Chen GZ. Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry. J Electroanal Chem. 2010;639(1):130.

    Article  Google Scholar 

  49. Xiao W, Wang X, Yin HY, Zhu H, Mao XH, Wang DH. Verification and implications of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2. RSC Adv. 2012;2(19):7588.

    Article  Google Scholar 

  50. Yang JY, Lu SG, Kan SR, Zhang XJ, Du J. Electrochemical preparation of silicon nanowires from nanometre silica in molten calcium chloride. Chem Commun. 2009;22:3273.

    Article  Google Scholar 

  51. Yin HY, Xiao W, Mao XH, Zhu H, Wang DH. Preparation of a porous nanostructured germanium from GeO2 via a “reduction–alloying–dealloying” approach. J Mater Chem A. 2015;3(4):1427.

    Article  Google Scholar 

  52. Yin HY, Xiao W, Mao XH, Wei WF, Zhu H, Wang DH. Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochim Acta. 2013;102:369.

    Article  Google Scholar 

  53. Zhao J, Li J, Ying P, Zhang W, Meng L, Li C. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt. Chem Commun. 2013;49(40):4477.

    Article  Google Scholar 

  54. Rong LB, He R, Wang ZY, Peng JJ, Jin XB, Chen GZ. Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2–NaCl. Electrochim Acta. 2014;147:352.

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (Nos. 51325102 and 21203141), the Natural Science Foundation of Ningxia (No. NZ14001), the West Light Foundation of The Chinese Academy of Sciences and the Young-Talent Chenguang Project of Wuhan City.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di-Hua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Wang, DH. Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts. Rare Met. 35, 581–590 (2016). https://doi.org/10.1007/s12598-016-0778-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0778-4

Keywords

Navigation