Skip to main content
Log in

Petrogenesis of the Bondla layered mafic-ultramafic complex, Usgaon, Goa

  • Published:
Journal of the Geological Society of India

Abstract

The Bondla mafic-ultramafic complex is a layered intrusion that consists predominantly of peridotites and gabbronorites. A chromitite-pyroxenite-troctolite horizon serves as a marker to subdivide the intrusion into two zones. The Lower Zone displays gravity stratified layers of chromite that alternate with those of olivine, which up-section are followed by olivine+pyroxene-chromite cumulates. The Upper Zone comprises gabbroic rocks that exhibit uniform layering. On the basis of modal and cryptic variation exhibited by the minerals this zone can be subdivided in to several lithohorizons starting from the troctolites at the base to gabbronorites and leucogabbros at the top. The junction between the two zones is marked by the distinct reversal in cryptic variation exhibited by the chromites and pyroxenes.

The peridotite chromites contain higher Al2O3 and lower Cr2O3 than those from the chromitite above. Similarly clinopyroxenes from pyroxenite and troctolites are more magnesian that those from the peridotites stratigraphically below them. The complex in general is characterized by a gabbroic mineral assemblage in which both Ca-rich and Capoor pyroxenes coexist and displays a Fe-enrichment trend providing evidence of evolution from a contaminated tholeiitic magma. The rocks are characterized by low-TiO2; Ni, Cr and V, show negative correlation with Zr whereas the large ion lithophile elements (LILE) are positively correlated and the Nb/La ratio varies from 0.4–0.6. These characteristics are consistent with a low-TiO2 sub-alkaline tholeiitic magma that may have been modified by fractional crystallization and successive injections of more primitive melts in the magma chamber. The complex evolved in a periodically replenished magma chamber that consisted of two separate but interconnected sub-chambers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai, Y. and Green, D.H. (1989) Phase relations in the system anorthite-potassium feldspar at 10 kb with emphasis on their solid solution. Miner. Mag., v.53, pp.337–345.

    Article  Google Scholar 

  • Alapieti, T.T., Halkoaho, T.A.A., Deavraju, T.C. and Jayaraj, K.R. (1994) Chromite hosted PGE mineralization in the Channagiri area, Karnataka state, India. Proc. VII International Platinum Symposium, Moscow, pp.3–4 (Abstract).

  • Balakrishnan, S, Abbas, M.H., Vidyadharan, K.T. and Raghunandan, K.R. (1992) Chromite and sulphide mineralization in the mafic-ultramafic complex of Usgao, Goa, Indian Minerals, v.41, pp.303–322.

    Google Scholar 

  • Ballhaus, C.G. and Glikson, A.Y. (1989) Magma mixing and intraplutonic quenching in the Wingelina Hills intrusion, Giles complex, Central Australia. Jour. Petrol., v.30, pp.1443–1469.

    Google Scholar 

  • Barnes, S.J. (1989) Are Bushveld U-type parent magmas boninites or contaminated komatiites? Contrib. Mineral. Petrol., v.101, pp.447–457.

    Article  Google Scholar 

  • Barnes, S.J. and Hoatson, D.M. (1994) The Munni Munni Complex, western Australia: stratigraphy, structure and petrogenesis. Jour. Petrol., v.35, pp.715–751.

    Google Scholar 

  • Bliss, N.J. and Mclean, W.H. (1975) The paragenesis of zoned chromites from Manitoba. Geochim. Cosmochim. Acta, v.39, pp.973–990.

    Article  Google Scholar 

  • Campbell, I. H. (1985) The differences between oceanic and continental tholeiites: a fluid dynamic explanation. Contrib. Mineral. Petrol., v.91, pp.37–43.

    Article  Google Scholar 

  • DeBari, S.M. (1964) Petrogenesis of the Fiambala gabbroic intrusion, northwestern Argentina, a deep crustal syntectonic pluton in a continental magmatic arc. Jour. Etrol. v.35, pp.679–713.

    Google Scholar 

  • Deer, W.A., Howie, R.A. and Zussman, J. (1997) Rock forming minerals, Single-chain Silicates. Geol. Soc. London, v.2A, 668p.

  • Dessai, A.G. and Peshwa, V.V. (1982) Manganese mineralization in a tropical forest area, Goa, India: A study based on aerial photographs and Landsat-1 imagery interpretation. In: D.J.C. Haming, and A. K. Gibbs (Eds.), Hidden Wealth: Mineral Exploration Techniques in tropical forest areas, pp.170–175.

  • Dessai, A.G., French, D. and Arolkar, D.B. (1994) Mineralogy of polymetallic sulphide mineralization in Archaean greenstones at Tisk-Usgao, Goa, India. Curr. Sci., v.66, pp.824–825.

    Google Scholar 

  • Dessai, A.G., Arolkar, D.B. and French, D. (1995a) Cu-Ni sulphide mineralization in greenstones at Tisk-Usgao, Goa. Jour. Indian Assoc. Sedimentologists, v.14, pp.1–18.

    Google Scholar 

  • Dessai, A.G., French, D. and Arolkar, D.B. (1995b) Geochemistry of stratiform chromites from the Bondla mafic-ultramafic complex, Usgao, Goa, India. Jour. Indian Assoc. Sedimentologists, v.15, pp.17–29.

    Google Scholar 

  • Devaraju, T.C., Alapieti, T.T., Halkoaho, T.A.A., Jayaraj, K.R. and Khanadali, S.D (1994) Evidence of PGE mineralization in the Channagiri mafic Complex, Shimoga district, Karnataka. Jour. Geol. Soc. India, v.43, pp.317–318.

    Google Scholar 

  • Dhoundial, D. P., Paul, D. K., Sarkar, A., Trivedi, J. R., Gopalan, K. and Potts, P.J. (1987) Geochronology and geochemistry of Precambrian granitic rocks of Goa, southwest, India. Precambrian Res., v.36, pp287–302.

    Article  Google Scholar 

  • Faure, G. (1992) Principles and applications of inorganic geochemistry. Macmillan Publishing Company, New York, 626p.

    Google Scholar 

  • Gokul, A.R. (1985) Structure and tectonics of Goa. Earth Resources for Goa’s development. Goa Seminar Volume, Geol. Surv. India, pp.14–21

  • Gokul, A.R. and Srinivasan, M.D. (1976) Chandranath Granite, Goa. Rec. Geol. Surv. India, v.107, pp.38–45.

    Google Scholar 

  • Green, T.H. and Pearson, N.J. (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta, v.51, pp.55–62.

    Article  Google Scholar 

  • Helz, R.T. (1973) Phase relations of basalts in their melting range at \( P_{H_2 O} \) = 5 Kb as a function of oxygen fugacity: Part I Mafic phases. Jour. Petrol., v.14, pp.249–302.

    Google Scholar 

  • Jan, M.F., Windley, B.F. and Khan, A.A. (1985) The Waziristan ophiolite, general geology and chemistry of chromites and associated phases. Econ. Geol., v.80, pp.249–306.

    Article  Google Scholar 

  • Kuno, H. (1968) Differentiation of basalt magmas, In: H.H. Hess and A. Poldervaart (Eds.), Basalts; Poldervaart treatise on rocks of basaltic composition. Interscience, John Wiley and Sons, New York, pp.623–688.

    Google Scholar 

  • Kuno, H. (1969) Plateau basalts. In: Hart, P. (Ed.) The earth’s crust and upper mantle. Amer. Geophys. Union, Geophysics Monograph, v.13, pp.495–501.

  • Leblanc, M. (1985) Les gisements de spinelles chromiferes. Bull. Mineral, v.108, pp.587–602

    Google Scholar 

  • Le Maitre, R.W. (1976) The chemical variability of some common igneous rocks. Jour. Petrol., v.17, pp.589–637.

    Google Scholar 

  • Lindsley, D.H. (1983) Pyroxene thermometry. Amer. Mineral., v.68, pp.477–493.

    Google Scholar 

  • Pearce, T.H. and Birkett, T.C. (1974) Archaean metavolcanic rocks from Thackeray township, Ontario. Can. Mineral., v.12, pp.509–519.

    Google Scholar 

  • Rhodes, J.M. (1981) Characteristics of primary basalt magmas. In: Basaltic Volcanism on the terrestrial planets. Pergamon, Oxford, pp.409–452.

    Google Scholar 

  • Saunders, A.D. and Tarney, J (1984) Goechemical characteristics of basaltic volcanism within back-arc basins. In: B.P. Kokelar and M. F. Howells (Eds.), Marginal basin geology: volcanic and associated sedimentary and tectonic processes in modern and ancient marginal basins. Geol. Soc. London Spec. Publ., pp.59–76.

  • Serri, G. (1981) Petrochemistry of ophiolite gabbroic complexes: a key for the classification of ophiolites into low-Ti and High-Ti types. Earth Planet. Sci. Lett., v.51, pp.203–212

    Article  Google Scholar 

  • Spangenberg, K. (1943) Die Chromitlager statte von Jampadal am Zobten E: Zeitschr. Parakt, Geologie, v.5, pp.13–35.

    Google Scholar 

  • Stowe, C.W. (1994) Compositions and tectonic settings of chromite deposits through time. Econ. Geol., v.89, pp.528–546.

    Article  Google Scholar 

  • Sun, S. S. (1980) Lead isotope study of young volcanic rocks from mid-oceanic ridges and island-arcs. Phil. Trans. Royal. Soc. London, v.A297, pp.409–445

    Google Scholar 

  • Sun, S.S. and Nesbitt, R.W. (1978) Petrogenesis of Archaean ultrabasic volcanics from the rare earth elements. Contrib. Mineral. Petrol., v.65, 301p.

  • Thomson, R.N., Hendry, G.L. and Parry, S.J. (1984) An assessment of the relative roles of the crust and mantle in magma genesis: an elemental approach. Phil. Trans. Royal Soc. London, v.A310, pp.549–590

    Google Scholar 

  • Vidyadharan, K.T. and Palaniappan, K. (2006) Mafic — ultramafic and related rocks of Southern Indian shield — potential target areas for PGE mineralization. Jour.Applied Geochemistry, v.8, pp.475–500.

    Google Scholar 

  • Wager, L.R. and Brown, G.M. (1967) Layered Igneous Rocks. W. H. Freeman & Co., Olliver and Boyd, Edinburg, London, 588p.

    Google Scholar 

  • Wager, L.R., Brown, G.M. and Wadsworth, W.J. (1960) Types of igneous cumulates. Jour. Petrol., v.73, pp.73–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dessai, A.G., Arolkar, D.B., French, D. et al. Petrogenesis of the Bondla layered mafic-ultramafic complex, Usgaon, Goa. J Geol Soc India 73, 697–714 (2009). https://doi.org/10.1007/s12594-009-0054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0054-4

Keywords

Navigation