Skip to main content
Log in

A systematic spectroscopic study of four Apollo lunar soils

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

A systematic spectroscopic study including Raman, Mid-IR, NIR, and VIS-NIR, is used to investigate four endmember lunar soils. Apollo soils (<45 μm) 14163, 15271, 67511, and 71501 were selected as endmembers to study, based on their soil chemistry, maturity against space weathering, and the sampling locations. These endmembers include an anorthositic highlands soil (67511), a low-Ti basaltic soil (15271), a high-Ti basaltic soil (71501), and a mafic, KREEPy, impact-melt-rich soil (14163). We used a laser Raman point-counting procedure to derive mineral modes of the soils and the compositional distributions of major mineral phases, which in turn reflect characteristics of the main source materials for these soils. The Mid-IR, NIR, and VIS-NIR spectroscopic properties also yield distinct information on mineralogy, geochemistry, and maturity among the four soils. Knowledge of the mineralogy resulting from the Raman point-counting procedure corresponds well with bulk mineralogy and soil properties based on Mid-IR, NIR, and VIS-NIR spectroscopy. The future synergistic application of these spectroscopy methods on the Moon will provide a linkage between the results from in situ surface exploration and those from orbital remote-sensing observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Adams, J. B., 1974. Visible and Near Infrared Diffuse Reflectance Spectra of Pyroxene as Applied to Remote Sensing of Solid Objects in the Solar System. Journal of Geophysical Research, 79(32): 4829–4836

    Article  Google Scholar 

  • Bell, J. F., Squyres, S. W., Herkenhoff, K. E., et al., 2003. Mars Exploration Rover Athena Panoramic Camera (Pancam) Investigation. Journal of Geophysical Ressearch, 108(E12): 8063

    Article  Google Scholar 

  • Bibring, J. P., Langevin, Y., Gendrin, A., et al., 2005. Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations. Science, 307(5715): 1576–1581

    Article  Google Scholar 

  • Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., 2001. Mars Global Surveyor Thermal Emission Spectrometer Experiment: Investigation Description and Surface Science Results. Journal of Geophysical Research, 106(E10): 23823–23871

    Article  Google Scholar 

  • Christensen, P. R., Jakosky, B., Kieffer, H. H., et al., 2004. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110(1–2): 85–130

    Article  Google Scholar 

  • Christensen, P. R., Mehall, G. L., Silverman, S. H., et al., 2003. Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers. Journal of Geophysical Research, 108(E12): 8064

    Article  Google Scholar 

  • Clark, R. N., 2009. Detection of Adsorbed Water and Hydroxyl on the Moon. Science, 326(5952): 562–564

    Article  Google Scholar 

  • Freeman, J. J., Wang, A., Kuebler, K. E., et al., 2008. Characterization of Natural Feldspars by Raman Spectroscopy for Future Planetary Exploration. Canadian Mineralogist, 46: 1477–1500

    Article  Google Scholar 

  • Haskin, L. A., Wang, A., Rockow, K. M., et al., 1997. Raman Spectroscopy for Mineral Identification and Quantification for in situ Planetary Surface Analysis: A Point Count Method. Journal of Geophysical Research, 102(E8): 19293–19306

    Article  Google Scholar 

  • Isaacson, P. J., Pieters, C. M., 2007. Spectroscopic Investigation of the Water Content of Lunar Soil. In: Proceedings of 38th Lunar and Planetary Science Conference. Huston, United States

  • Jolliff, B. L., Hughes, J. M., Freeman, J. J., et al., 2006. Crystal Chemistry of Lunar Merrillite and Comparison to Other Meteoritic and Planetary Suites of Whitlockite and Merrillite. American Mineralogist, 91(10): 1583–1595

    Article  Google Scholar 

  • Kuebler, K. E., Jolliff, B. L., Wang, A., et al., 2006. Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions. Geochimica et Cosmochimica Acta, 70(24): 6201–6222

    Article  Google Scholar 

  • Ling, Z. C., Wang, A., Jolliff, B. L., 2011. Mineralogy and Geochemistry of Four Lunar Soils by Laser-Raman Study. Icarus, 211(1): 101–113

    Article  Google Scholar 

  • Matsunaga, T., Ohtake, M., Haruyama, J., et al., 2008. Discoveries on the Lithology of Lunar Crater Central Peaks by SELENE Spectral Profiler. Geophyssical Research Letters, 35(23): L23201

    Article  Google Scholar 

  • Morris, R. V., 1978. The Surface Exposure (Maturity) of Lunar Soils—Some Concepts and Is/FeO Compilation. In: Proceedings of 9th Lunar and Planetary Science Conference. Huston, United States

  • Murchie, S., Arvidson, R., Bedini, P., et al., 2007. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 112: E05S03

    Article  Google Scholar 

  • Paige, D. A., Foote, M. C., Greenhagen, B. T., et al., 2010. The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Science Reviews, 150(1–4): 125–160

    Article  Google Scholar 

  • Pieters, C. M., Englert, P. A. J., 1993. Remote Geochemical Analysis, Elemental and Mineralogical Composition. Cambridge University Press, Cambridge

    Google Scholar 

  • Pieters, C. M., Fischer, E. M., Rode, O., et al., 1993. Optical Effects of Space Weathering—The Role of the Finest Fraction. Journal of Geophysical Research, 98(E11): 20817–20824

    Article  Google Scholar 

  • Pieters, C. M., Goswami, J. N., Clark, R. N., et al., 2009. Character and Spatial Distribution of OH/H2O on the Surface of the Moon Seen by M-3 on Chandrayaan-1. Science, 326(5952): 568–572

    Article  Google Scholar 

  • Pieters, C. M., Shkuratov, Y., Kaydash, V., et al., 2006. Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. Icarus, 184(1): 83–101

    Article  Google Scholar 

  • Sunshine, J. M., Farnham, T. L., Feaga, L. M., et al., 2009. Temporal and Spatial Variability of Lunar Hydration as Observed by the Deep Impact Spacecraft. Science, 326(5952): 565–568

    Article  Google Scholar 

  • Wang, A., Haskin, L. A., Lane, A. L., et al., 2003. Development of the Mars Microbeam Raman Spectrometer (MMRS). Journal of Geophysical Research, 108(E1): 5005

    Article  Google Scholar 

  • Wang, A., Jolliff, B. L., Haskin, L. A., 1995. Raman-Spectroscopy as a Method for Mineral Identification on Lunar Robotic Exploration Missions. Journal of Geophysical Research, 100(E10): 21189–21199

    Article  Google Scholar 

  • Wang, A., Jolliff, B. L., Haskin, L. A., et al., 2001. Characterization and Comparison of Structural and Compositional Features of Planetary Quadrilateral Pyroxenes by Raman Spectroscopy. American Mineralogist, 86(7–8): 790–806

    Google Scholar 

  • Wang, A., Kuebler, K. E., Jolliff, B. L., et al., 2004. Raman Spectroscopy of Fe-Ti-Cr-Oxides, Case Study: Martian Meteorite EETA79001. American Mineralogist, 89(5–6): 665–680

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongcheng Ling  (凌宗成).

Additional information

This study was supported by the Funds from Shandong University and Washington University, the Postdoctoral Science Foundation of China (No. 20090450580), the National Natural Science Foundation of China (No. 11003012), the Natural Science Foundation of Shandong Province (No. ZR2011AQ001), and the National High Technology Research and Development Program of China (Nos. 2009AA122201, 2010AA122200).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, Z., Wang, A. & Jolliff, B.L. A systematic spectroscopic study of four Apollo lunar soils. J. Earth Sci. 22, 578–585 (2011). https://doi.org/10.1007/s12583-011-0208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0208-3

Key Words

Navigation