Skip to main content

Advertisement

Log in

The challenges of sustainably feeding a growing planet

  • Original Paper
  • Published:
Food Security Aims and scope Submit manuscript

Abstract

Feeding the world’s population while ensuring environmental sustainability is one of the world’s ‘grand challenges’. While population and income will remain the most important drivers of global food production, their relative importance will be reversed by 2050, with income growth becoming the dominant force. Energy prices are a wildcard, with continued low prices dampening demand for biofuels and encouraging intensification of production. In contrast, a return to high oil prices could greatly increase pressure to expand cropland. Regional water shortages are likely to constrain irrigated agriculture in many key river basins. However, at global scale, international trade will moderate the impacts of water scarcity on food supplies and prices. The key determinant of global food prices in 2050 will be the rate of overall technological progress in agriculture. Here, there are two competing views of the world. Pessimists point to the slowing rate of yield growth in many key breadbaskets, suggesting this will be exacerbated by climate change. In contrast, optimists argue that overall productivity growth has continued to rise – fueled by record public R&D investments in China, India and Brazil, as well as by the private sector. Reduced food waste and post-harvest losses offers another potential source of food supply. However, future agricultural land use is likely to face increasing competition from environmental services, including carbon sequestration and biodiversity. Understanding these competing demands for global resources will require greater inter-disciplinary research effort, supported by improved global geospatial data and analytical frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. One might reasonably ask: How can we know how consumers in Ethiopia will behave when they become as rich as consumers in South Africa? Will Chinese consumers follow the path charted by consumers in Taiwan? In order to predict the evolution of consumer spending as incomes rise, economists look at behavior across many countries, seeking to identify broad patterns across wide ranges of income. There is considerable evidence that consumers follow a common pattern with regard to broad-based consumption behavior (e.g., food, housing etc.) (Dowrick and Quiggin 1994). Muhammad et al. (2011) estimate the response of food consumption to changing prices and income. They find some relationships that are important for projections purposes – namely the diminishing marginal impact of income on consumption, as well as the fact that consumers’ responsiveness to food price changes also diminishes as incomes rise. Hertel and Baldos use these relationships to “backcast” global food demand, prices and land use, and find that, at global scale, they are able to reproduce historical food consumption over a 45 year period. This gives us some hope that we can say something useful about the next 45 years.

  2. These authors compare maize yield growth in Iowa with that in France and Italy. In the 25 years prior to the introduction of GM corn (the mid-1990’s), yields in the two regions grew at very similar rates. However, since 1996, GM-based maize yields in Iowa have grown at about 2 %/year, whereas they have remained largely flat in France and Italy. Of course, there were other factors at work during this period, include reform of the EU Common Agricultural Policy which reduced the incentives for farmers to intensify production.

  3. Yet another, more pedestrian argument behind the slowdown in yield growth is simple arithmetic. As yield trends tend to grow at a linear rate (e.g., 1 bushel of grain/acre/year), as the yield level grows, this annual increment represents a smaller and smaller % of the total, thereby resulting in a slowing rate of growth (Cassman et al. 2010).

References

  • Abbott, P., Hurt, C., & Tyner, W. E. (2011). What’s driving food prices in 2011?. Farm Foundation.

  • Ahmed, S. A., Diffenbaugh, N. S., & Hertel, T. W. (2009). Climate volatility deepens poverty vulnerability in developing countries. Environmental Research Letters, 4(3), 034004. doi:10.1088/1748-9326/4/3/034004.

    Article  Google Scholar 

  • Alexandratos, N. (2010). Critical evaluation of selected projections (2010th ed.). Rome: Presented at the FAO Expert meeting on How to Feed the World in 2050: 24-26 June 2009.

    Google Scholar 

  • Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision (Working Paper No. 12-03). Rome: Food and Agriculture Organisation of the United Nations.

    Google Scholar 

  • Al-Riffai, P., Dimaranan, B., & Laborde, D. (2010). Global trade and environmental impact study of the EU biofuels mandate. Washington DC: International Food Policy Research Institute. http://environmentportal.in/files/biofuelsreportec.pdf.

  • Alston, J. M., Beddow, J. M., & Pardey, P. G. (2009). Agricultural research, productivity, and food prices in the long run. Science, 325(5945), 1209–1210. doi:10.1126/science.1170451.

    Article  CAS  PubMed  Google Scholar 

  • Alston, J. M., Pardey, P. G., & Ruttan, V. W. (2008). Research lags revisited: concepts and evidence from U.S. agriculture (Staff Paper No. 50091). University of Minnesota, Department of Applied Economics. http://ideas.repec.org/p/ags/umaesp/50091.html. Accessed 22 April 2013.

  • Angelsen, A., & Kaimowitz, D. (Eds.). (2001). Agricultural Technologies and Tropical Deforestation (Vol. Agricultural technologies and tropical deforestation). CAB International.

  • Antoine, C., Gurgel, A., & Reilly, J. (2008). Will recreation demand for land limit biofuels production? Journal of Agricultural and Food Industrial Organization, 6(2), 1–27.

    Article  Google Scholar 

  • Baldos, U. L. C., & Hertel, T. (2014). Bursting the bubble: a long run perspective on crop commodity prices. GTAP Working Paper No. 80. http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID = 4574

  • Baldos, U. L. C., & Hertel, T. W. (2014b). Global food security in 2050: the role of agricultural productivity and climate change. Australian Journal of Agricultural and Resource Economics. doi:10.1111/1467-8489.12048.

    Google Scholar 

  • Barona, E., Ramankutty, N., Hyman, G., & Coomes, O. T. (2010). The role of pasture and soybean in deforestation of the Brazilian Amazon. Environmental Research Letters, 5(2), 024002. doi:10.1088/1748-9326/5/2/024002.

    Article  Google Scholar 

  • Beintema, N., Stads, G.-J., Fuglie, K., & Heisey, P. (2012). ASTI global assessment of agricultural R&D spending: Developing countries accelerate investment (International Food Policy Report). Washington: International Food Policy Research Institute, Agricultural Science and Technology Indicators, Global Forum on Agricultural Research.

    Google Scholar 

  • Bloom, D. E. (2011). 7 Billion and counting. Science, 333(6042), 562–569. doi:10.1126/science.1209290.

    Article  CAS  PubMed  Google Scholar 

  • Borlaug, N. (1976). Forestry in a world of limited resources: Mobilizing world land resources to meet the growing needs for food, fibre, forest products, wildlife and recreation. XVI World Congr. Int (pp. 171–245). Oslo: Union of Forest Research Organizations.

    Google Scholar 

  • Bruinsma, J. (2009). The resource outlook to 2050. By how much do land, water use and crop yields need to increase by 2050? In FAO Expert meeting on How to Feed the World in 2050. Rome, Italy: Food and Agriculture Organisation of the UN.

  • Busch, J., Lubowski, R. N., Ashkenazi, E., Austin, K., Baccinni, A., Boltz, F., et al. (2013). Reducing emissions from deforestation in Indonesia: carbon payments or a moratorium on concessions? in preparation.

  • Cassman, K. G., Grassini, P., & van Wart, J. (2010). Crop yield potential, yield trends, and global food security in a changing climate. In D. Hillel & C. Rosenzweig (Eds.), Handbook of climate change and Agroecosystems: Impacts, adaptation, and mitigation (Vol. 1, pp. 37–51). NJ: World Scientific Publishing Co. Pte. Ltd.

    Chapter  Google Scholar 

  • Claessens, L., Antle, J. M., J. Stoorvogel, Validvia, R.O., Thornton, P.K., & Herrero, M. (2012). A method for evaluating climate change adaptation strategies for small-scale farmers using survey, experimental and modeled data. Agricultural Systems, Forthcoming.

  • Deryng, D., Sacks, W. J., Barford, C. C., & Ramankutty, N. (2011). Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles, 25, 18. 201110.1029/2009GB003765.

    Article  Google Scholar 

  • Dowrick, S., & Quiggin, J. (1994). International comparisons of living standards and tastes: a revealed-preference analysis. American Economic Review, 84(1), 332–41. Accessed 17 April 2013.

    Google Scholar 

  • FAO. (2011). Global food losses and food waste: extent, causes and prevention (p. 38). Rome, Italy.

  • Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O’Hare, M., & Kammen, D. M. (2006). Ethanol can contribute to energy and environmental goals. Science, 311(5760), 506–508. doi:10.1126/science.1121416.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, R. A., Byerlee, D., & Edmeades, G. (2014). Crop yield and food security: Will yield increases continue to feed the world? Canberra: ACIAR.

    Google Scholar 

  • Food and Agricultural Organization (FAO). (2014). The water-energy-food nexus: a new approach in support of food security. FAO: Rome. http://www.fao.org/nr/water/docs/FAO_nexus_concept.pdf.

  • Fuglie, K. O. (2012). Productivity growth and technology capital in the global agricultural economy. In K. O. Fuglie, S. L. Wang, & V. E. Ball (Eds.), Productivity growth in agriculture: An international perspective (pp. 335–368). Cambridge: CAB International.

    Chapter  Google Scholar 

  • Gerland, P., Raftery, A. E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., et al. (2014). World population stabilization unlikely this century. Science, 346(6206), 234–237. doi:10.1126/science.1257469.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gibbs, H. K., Ruesch, A. S., Achard, F., Clayton, M. K., Holmgren, P., Ramankutty, N., & Foley, J. A. (2010). Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proceedings of the National Academy of Sciences, 107(38), 16732–16737. doi:10.1073/pnas.0910275107.

    Article  CAS  Google Scholar 

  • Golub, A. G., & Hertel, T. W. (2008). Global Economic Integration and Land Use Change, 23(3), 463–488.

    Google Scholar 

  • Golub, A., Henderson, B. B., Hertel, T., Gerber, P., Rose, S., & Sohngen, B. (2012). Global climate policy impacts on livestock, land use, livelihoods and food security. Proceedings of the National Academy of Sciences, In press.

  • Golub, A., Hertel, T. W., Lee, H.-L., Rose, S., & Sohngen, B. (2009). The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry. Resource and Energy Economics, 31(4), 299–319. doi:10.1016/j.reseneeco.2009.04.007.

    Article  Google Scholar 

  • Grafton, R. Q., Pittock, J., Davis, R., Williams, J., Fu, G., Warburton, M., et al. (2013). Global insights into water resources, climate change and governance. Nature Climate Change, 3(4), 315–321. doi:10.1038/nclimate1746.

    Article  Google Scholar 

  • Green, R. E., Cornell, S. J., Scharlemann, J. P. W., & Balmford, A. (2005). Farming and the fate of wild nature. Science, 307(5709), 550–555. doi:10.1126/science.1106049.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, R. C. (2006). Water resource economics: the analysis of scarcity, policies, and projects (MIT Press Books). The MIT Press. http://ideas.repec.org/b/mtp/titles/026207267x.html. Accessed 19 February 2014.

  • Herdt, R. W. (1979). An overview of the constraints project results. In Farm-level constraints to high rice yields in Asia: 1974–1977 (pp. 395–421). Los Baños: International Rice Research Institute.

    Google Scholar 

  • Hertel, T. (2011). The global supply and demand for land in 2050: a perfect storm? American Journal of Agricultural Economics, 93(1).

  • Hertel, T., Burke, M., & Lobell, D. (2010a). The poverty implications of climate-induced crop yield changes by 2030. Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.

  • Hertel, T., Golub, A., Jones, A., O’Hare, M., Plevin, R., & Kammen, D. (2010b). Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience, 60(3).

  • Hertel, T., & Lobell, D. (2012). Agricultural adaptation to climate change in rich and poor countries: current modeling practice and potential for empirical contributions. GTAP Working Paper No. 72. http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID = 4030

  • Hertel, T. W., Britz, W., Diffenbaugh, N. S., Ramankutty, N., & Villoria, N. (2010c). A global, spatially explicit, open source data base for analysis of agriculture, forestry, and the environment: proposal and institutional considerations (Report to the UK Science Advisor). Department of Agricultural Economics, Purdue University. http://www.agecon.purdue.edu/foresight/proposal_spatial_database10-15-2010.pdf.

  • Hertel, T. W., & Lobell, D. B. (2014). Agricultural adaptation to climate change in rich and poor countries: current modeling practice and potential for empirical contributions. Energy Economics. doi:10.1016/j.eneco.2014.04.014.

    Google Scholar 

  • Hertel, T. W., Ramankutty, N., & Baldos, U. L. C. (2014). does agricultural intensification spare land? Revisiting history and exploring the future. PNAS (In Press).

  • Hertel, T. W., & Villoria, N. B. (2014). GEOSHARE: Geospatial open source hosting of agriculture, resource & environmental data for discovery and decision making. Purdue University. https://mygeohub.org/resources/977/download/GEOSHARE_Prospectus-Final.pdf.

  • Huber, M. (2013, February 12). Modelling of climate change: implications for food, water, and energy security. Presented at the presentation to the class on “Global Land Use in 2050: Implications for Food Securtiy and the Environment,” Purdue University.

  • Hussein, Z., Hertel, T., & Golub, A. (2013). Poverty impacts of climate mitigation policy. Under review with environmental research letters.

  • IPCC. (2014). Climate change 2014: impacts, adaptation, and vulnerability. In contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Irfanoglu, Z. B., Baldos, U. L. C., Hertel, T. W., & Mensbrugghe, D. van der. (2014). Impacts of reducing global food loss and waste on food security, trade, GHG emissions and land use. Presented at the prepared for presentation at the 17th annual conference on global economic analysis, Dakar, Senegal.

  • Jacobsen, J., & Hanley, N. (2009). Are there income effects on global willingness to pay for biodiversity conservation? Environmental and Resource Economics, 43(2), 137–160. doi:10.1007/s10640-008-9226-8.

    Article  Google Scholar 

  • Kauppi, P. E., Ausubel, J. H., Fang, J., Mather, A. S., Sedjo, R. A., & Waggoner, P. E. (2006). Returning forests analyzed with the forest identity. Proceedings of the National Academy of Sciences, 103(46), 17574–17579. doi:10.1073/pnas.0608343103.

    Article  CAS  Google Scholar 

  • Lambin, E. F., & Meyfroidt, P. (2011). Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9), 3465–3472. doi:10.1073/pnas.1100480108.

    Article  CAS  Google Scholar 

  • Lepers, E., Lambin, E. F., Janetos, A. C., DeFries, R. S., Achard, F., Ramankutty, N., & Scholes, R. J. (2005). A synthesis of information on rapid land-cover change for the period 1981–2000. BioScience, 55(2), 115–124. doi:10.1641/0006-568(2005)055[0115:ASOIOR]2.0.CO;2.

    Article  Google Scholar 

  • Licker, R., Johnston, M., Barford, C., Foley, J. A., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: how do climate and agricultural management explain the “yield gap” of croplands around the world?

  • Liu, J., Hertel, T., Taheripour, F., Zhu, T., & Ringler, C. (2014). International trade buffers the impact of future irrigaiton shortfalls. Global Environmental Change, In Press.

  • Lobell, D. B., Baldos, U. L. C., & Hertel, T. W. (2013). Climate adaptation as mitigation: the case of agricultural investments. Environmental Research Letters, 8. doi:10.1088/1748-9326/8/1/015012

  • Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34(1), 179–204. doi:10.1146/annurev.environ.041008.093740.

    Article  Google Scholar 

  • Lobell, D. B., & Gourdji, S. M. (2012). The influence of climate change on global crop productivity. Plant Physiology, 160(4), 1686–1697. doi:10.1104/pp. 112.208298.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science, 333, 616–620. doi:10.1126/science.1204531.

    Article  CAS  PubMed  Google Scholar 

  • Ludena, C. E., Hertel, T. W., Preckel, P. V., Foster, K., & Nin, A. (2007). Productivity growth and convergence in crop, ruminant, and nonruminant production: measurement and forecasts. Agricultural Economics, 37(1), 1–17. doi:10.1111/j.1574-0862.2007.00218.x.

    Article  Google Scholar 

  • Mather, A. S., & Needle, C. L. (1998). The forest transition: a theoretical basis. Area, 30(2), 117–124. doi:10.1111/j.1475-4762.1998.tb00055.x.

    Article  Google Scholar 

  • Meyfroidt, P., Rudel, T. K., & Lambin, E. F. (2010). Forest transitions, trade, and the global displacement of land use. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1014773107.

    Google Scholar 

  • Muhammad, A., Seale Jr., J. L., Meade, B., & Regmi, A. (2011). International evidence on food consumption patterns: an update using 2005 international comparison program data (Technical Bulletin No. TB-1929) (p. 59). Washington, D.C., USA: Economic Research Service, US Department of Agriculture. http://www.ers.usda.gov/Publications/TB1929/. Accessed 15 April 2011.

  • Müller, C., Bondeau, A., Popp, A., Waha, K., & Fader, M. (2010). Climate change impacts on agricultural yields: Background note to the world development report 2010 (Background Note). Germany: Potsdam Institute for Climate Impact Research.

    Google Scholar 

  • Narayanan, B., Aguiar, A., & McDougall, R. (2012). Global trade, assistance, and production: the GTAP 8 data base (Vol. 8). Center for Global Trade Analysis, Purdue University.

  • Nelson, G. C., van der Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K., Hasegawa, T., et al. (2014). Agriculture and climate change in global scenarios: why don’t the models agree. Agricultural Economics, 45(1), 85–101. doi:10.1111/agec.12091.

    Article  Google Scholar 

  • Nelson, G., Rosegrant, M., Koo, J., Robertson, R., Sulser, T., Zhu, T., et al. (2009). Climate change: Impact on agriculture and costs of adaptation. Washington: International Food Policy Research Institute.

    Google Scholar 

  • Nelson, G., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., et al. (2010). The costs of agricultural adaptation to climate change (Discussion Paper No. 4) (p. 62). Washington: The World Bank. Accessed 7 March 2010.

    Google Scholar 

  • Neumann, K., Verburg, P. H., Stehfest, E., & Müller, C. (2010). The yield gap of global grain production: a spatial analysis. Agricultural Systems, 103(5), 316–326. Accessed 28 April 2010.

    Article  Google Scholar 

  • OECD. (2013). Managing water for green growth. OECD.

  • Olmstead, S. M. (2013). Climate change adaptation and water resource management: a review of the literature. Energy Economics. doi:10.1016/j.eneco.2013.09.005.

    Google Scholar 

  • Paarlberg, R. L. (2008). Starved for science: how biotechnology is being kept out of Africa. Harvard University Press.

  • Phalan, B., Onial, M., Balmford, A., & Green, R. E. (2011). Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science, 333(6047), 1289–1291. doi:10.1126/Science.1208742.

    Article  CAS  PubMed  Google Scholar 

  • Pingali, P. (2007). “Westernization of Asian Diets and the Transformation of Food Systems: Implications for Research and Policy.” Food Policy 32(3), 281–98. doi:10.1016/j.foodpol.2006.08.001.

  • Popp, A., Lotze-Campen, H., & Vohland, K. (2012). Land use management for greenhouse gas mitigation. In Edenhofer, O., Wallacher, J., Lotze-Campen, H., Reder, M., Knopf, B., & Müller, J. (Eds.), Climate Change, Justice and Sustainability (pp. 151–159). Springer Netherlands. http://dx.doi.org/10.1007/978-94-007-4540-7_14.

  • Rada, N. (2013). Agricultural growth in India: examining the post-green revolution transition. Selectect Paper, AAEA meetings.

  • Reilly, J., Melillo, J., Cai, Y., Kicklighter, D., Gurgel, A., Paltsev, S., et al. (2012). Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environmental Science & Technology, 46(11), 5672–5679. doi:10.1021/es2034729.

    Article  CAS  Google Scholar 

  • Reilly, J. M., Hrubovcak, J., Graham, J., Abler, D. G., Darwin, R., Hollinger, S. E., et al. (2002). Changing climate and changing agriculture. New York: Cambridge University Press.

    Google Scholar 

  • Reilly, J., Paltsev, S., Felzer, B., Wang, X., Kicklighter, D., Melillo, J., et al. (2007). Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Energy Policy, 35(11), 5370–5383. Accessed 12 March 2010.

    Article  Google Scholar 

  • Roberts, L. (2011). 9 Billion? Science, 333(6042), 540–543. doi:10.1126/science.333.6042.540.

    Article  CAS  PubMed  Google Scholar 

  • Rosegrant, M. W., Ringler, C., Zhu, T., Tokgoz, S., & Bhandary, P. (2013). Water and food in the global bioeconomy: challenges and opportunities for development. Agricultural Economics, forthcoming.

  • Rosenzweig, C., elliot, J., Deryng, D., Ruane, A. C., Arneth, A., Boote, K. J., et al. (2013). Assessing the agricultural challenges and risks posed by climate change in the 21st century. Proceedings of the National Academy of Sciences of the United State of America, Forthcoming.

  • Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., et al. (2013b). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1222463110.

    Google Scholar 

  • Rose, S. K., Ahammad, H., Eickhout, B., Fisher, B., Kurosawa, A., Rao, S., et al. (2012). Land-based mitigation in climate stabilization. Energy Economics, 34(1), 365–380. doi:10.1016/j.eneco.2011.06.004.

    Article  Google Scholar 

  • Schlenker, W., & Lobell, D. B. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 5(1), 014010. doi:10.1088/1748-9326/5/1/014010.

    Article  Google Scholar 

  • Schmitz, C., van Meijl, H., Kyle, P., Nelson, G. C., Fujimori, S., Gurgel, A., et al. (2014). Land-use change trajectories up to 2050: insights from a global agro-economic model comparison. Agricultural Economics, 45(1), 69–84. doi:10.1111/agec.12090.

    Article  Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., et al. (2008). Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319(5867), 1238–1240. doi:10.1126/science.1151861.

    Article  CAS  PubMed  Google Scholar 

  • Sohngen, B. (2010). An analysis of forestry carbon sequestration as a response to climate change. Copenhagen Consensus on Climate.

  • Steinbuks, J., & Hertel, T. (2012). Forest, Agriculture, and Biofuels in a Land use model with Environmental services (FABLE). GTAP Working Paper No. 71. http://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=3988.

  • Steinbuks, J., & Hertel, T. W. (2013). Energy prices will play an important role in determining global land use in the twenty first century. Environmental Research Letters, 8(1), 014014. doi:10.1088/1748-9326/8/1/014014.

    Article  Google Scholar 

  • Taheripour, F., Hertel, T. W., & Liu, J. (2013a). The role of irrigation in determining the global land use impacts of biofuels. Energy Sustainability and Society, 3(1), 4. doi:10.1186/2192-0567-3-4.

    Article  Google Scholar 

  • Taheripour, F., Hurt, C., & Tyner, W. E. (2013b). Livestock industry in transition: economic, demographic, and biofuel drivers. Animal Frontiers, 3(2), 38–46. doi:10.2527/af.2013-0013.

    Article  Google Scholar 

  • Taheripour, F., & Tyner, W. (2013). Biofuels and land use change: Applying recent evidence to model estimates. Applied Sciences, 3(1), 14–38. doi:10.3390/app3010014.

    Article  Google Scholar 

  • Tyner, W. E. (2010). The integration of energy and agricultural markets. Agricultural Economics, 41(6).

  • United Nations Population Division. (2000). The world at six billion. New York: United Nations.

    Google Scholar 

  • U.S. Energy Information Administration, (2013). Annual energy outlook 2013: With projections to 2040 (Annual Energy Outlook No. DOE/EIA-0383) (p. 244). Washington: U.S. Department of Energy.

    Google Scholar 

  • Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37(1), 195–222. doi:10.1146/annurev-environ-020411-130608.

    Article  Google Scholar 

  • Waggoner, P. E. (1994). How much land can ten billion people spare for nature? (p. 64). Ames, Iowa: Council for Agricultural Science and Technology (CAST).

  • Westhoff, P. (2010). The economics of food. New Jersey: Financial Times Press.

    Google Scholar 

  • White, J. W., Hoogenboom, G., & Hunt, L. A. (2005). A structured procedure for assessing how crop models respond to temperature. Agronomy Journal, 97(2), 426–439.

    Article  Google Scholar 

  • White, J. W., Hoogenboom, G., Kimball, B. A., & Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3), 357–368. doi:10.1016/j.fcr.2011.07.001.

    Article  Google Scholar 

  • Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., et al. (2009). Implications of limiting CO2 concentrations for land use and energy. Science, 324(5931), 1183–1186. doi:10.1126/science.1168475.

    Article  CAS  PubMed  Google Scholar 

  • World Bank. (2008). Agriculture for development (pp. 1–386). Accessed 1 March 2010.

  • Ziska, L. H., & Dukes, J. (2011). Weed biology and climate change (1st ed.). Wiley-Blackwell.

Download references

Acknowledgements

This paper was part of a workshop sponsored by the OECD Co-operative Research Programme on Biological Resource Management for Sustainable Agricultural Systems.

Paper submitted for inclusion in a special issue of the journal: Food Security entitled: “Feeding 9.6 Billion in 2050: Challenges and Choices”, edited by Grafton, Daugberg and Qureshi. An earlier version of this paper was presented at the MIT-CSIS Energy Sustainability Challenge Forum, May 6–7, 2013: Washington, D.C. The author acknowledges valuable discussions with Uris Baldos, Derek Byerlee, Quentin Grafton, David Lobell, John Reilly and Farzad Taheripour. He would also like to acknowledge support for the underlying research into the climate-food-energy-land-water nexus from US DOE, Office of Science, Office of Biological and Environmental Research, Integrated Assessment Research Program, Grant No. DE-SC005171, and from the National Science Foundation, grant 0951576: DMUU: Center for Robust Decision Making on Climate and Energy Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Hertel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertel, T.W. The challenges of sustainably feeding a growing planet. Food Sec. 7, 185–198 (2015). https://doi.org/10.1007/s12571-015-0440-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12571-015-0440-2

Keywords

Navigation