Skip to main content

Advertisement

Log in

Compartmental organization of synaptic inputs to parvalbumin-expressing GABAergic neurons in mouse primary somatosensory cortex

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

Parvalbumin (PV)-positive fast-spiking cells in the neocortex are known to generate gamma oscillations by mutual chemical and electrical connections. Recent findings suggest that this rhythm might be responsible for higher-order brain functions, and related to psychiatric disorders. To elucidate the precise structural rules of the connections of PV neurons, we first produced genetic tools. Using a lentiviral expression system, we developed neuron-specific promoters and a new reporter protein that labels the somatodendritic membrane of neurons. We applied the reporter protein to the generation of transgenic mice, and succeeded in visualizing the dendrites and cell bodies of PV neurons efficiently. Then we analyzed excitatory and inhibitory inputs to PV neurons in the primary somatosensory cortex using the mice. Corticocortical glutamatergic inputs were more frequently found on the distal dendrites than on the soma, whereas thalamocortical inputs did not differ between the proximal and distal portions. Corticocortical inhibitory inputs were more densely distributed on the soma than on the dendrites. We further investigated which types of neocortical GABAergic neurons preferred the PV soma over their dendrites. We revealed that the somatic and dendritic compartments principally received GABAergic inputs from vasoactive intestinal polypeptide (VIP)-positive and PV neurons, respectively. This compartmental organization suggests that PV neurons communicate with each other mainly via the dendrites, and that their activity is effectively controlled by the somatic inputs of VIP neurons. These findings provide new insights into the neuronal circuits involving PV neurons, and contribute to a better understanding of brain functions and mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amendola M, Venneri MA, Biffi A, Vigna E, Naldini L (2005) Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat Biotechnol 23(1):108–116

    PubMed  CAS  Google Scholar 

  • Andrasfalvy BK, Mody I (2006) Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons. J Physiol 576(1):191–196

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ascoli GA, Alonso-Nanclares L, Anderson SA et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568

    PubMed  CAS  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56

    PubMed  CAS  Google Scholar 

  • Bayraktar T, Staiger JF, Acsady L, Cozzari C, Freund TF, Zilles K (1997) Co-localization of vasoactive intestinal polypeptide, gamma-aminobutyric acid and choline acetyltransferase in neocortical interneurons of the adult rat. Brain Res 757(2):209–217

    PubMed  CAS  Google Scholar 

  • Blatow M, Rozov A, Katona I et al (2003) A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron 38(5):805–817

    PubMed  CAS  Google Scholar 

  • Burkhalter A (2008) Many specialists for suppressing cortical excitation. Front Neurosci 2(2):155–167

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cardin JA, Carlen M, Meletis K et al (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459(7247):663–667

    PubMed Central  PubMed  CAS  Google Scholar 

  • Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71(1):3–9

    PubMed  CAS  Google Scholar 

  • Cauli B, Audinat E, Lambolez B et al (1997) Molecular and physiological diversity of cortical nonpyramidal cells. J Neurosci 17(10):3894–3906

    PubMed  CAS  Google Scholar 

  • Cauli B, Porter JT, Tsuzuki K et al (2000) Classification of fusiform neocortical interneurons based on unsupervised clustering. Proc Natl Acad Sci USA 97(11):6144–6149

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cauli B, Zhou X, Tricoire L, Toussay X, Staiger JF (2014) Revisiting enigmatic cortical calretinin-expressing interneurons. Front Neuroanat 8:52

    PubMed Central  PubMed  Google Scholar 

  • Chaudhry FA, Reimer RJ, Bellocchio EE et al (1998) The vesicular GABA transporter, VGAT, localizes to synaptic vesicles in sets of glycinergic as well as GABAergic neurons. J Neurosci 18(23):9733–9750

    PubMed  CAS  Google Scholar 

  • Connor JR, Peters A (1984) Vasoactive intestinal polypeptide-immunoreactive neurons in rat visual cortex. Neuroscience 12(4):1027–1044

    PubMed  CAS  Google Scholar 

  • Cots D, Bosch A, Chillón M (2013) Helper dependent adenovirus vectors: progress and future prospects. Curr Gene Ther 13(5):370–381

    PubMed  CAS  Google Scholar 

  • Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398

    PubMed Central  PubMed  CAS  Google Scholar 

  • Defelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28 K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14(1):1–19

    PubMed  CAS  Google Scholar 

  • Demeulemeester H, Vandesande F, Orban GA, Brandon C, Vanderhaeghen JJ (1988) Heterogeneity of GABAergic cells in cat visual cortex. J Neurosci 8(3):988–1000

    PubMed  CAS  Google Scholar 

  • Dittgen T, Nimmerjahn A, Komai S et al (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci USA 101(52):18206–18211

    PubMed Central  PubMed  CAS  Google Scholar 

  • Dryga SA, Dryga OA, Schlesinger S (1997) Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. Virology 228(1):74–83

    PubMed  CAS  Google Scholar 

  • Fechner H, Haack A, Wang H et al (1999) Expression of coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther 6(9):1520–1535

    PubMed  CAS  Google Scholar 

  • Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1):41–51

    PubMed  CAS  Google Scholar 

  • Forss-Petter S, Danielson PE, Catsicas S et al (1990) Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 5(2):187–197

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I et al (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31(2):247–260

    PubMed  CAS  Google Scholar 

  • Freund TF, Katona I (2007) Perisomatic inhibition. Neuron 56(1):33–42

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin: where do we stand, where do we go? Trends Neurosci 31(5):257–264

    PubMed  CAS  Google Scholar 

  • Fujiyama F, Furuta T, Kaneko T (2001) Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol 435(3):379–387

    PubMed  CAS  Google Scholar 

  • Fujiyama F, Hioki H, Tomioka R et al (2003) Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol 465(2):234–249

    PubMed  CAS  Google Scholar 

  • Fukuda T, Kosaka T (2003) Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat. Neuroscience 120(1):5–20

    PubMed  CAS  Google Scholar 

  • Fukuda T, Kosaka T, Singer W, Galuske RA (2006) Gap junctions among dendrites of cortical GABAergic neurons establish a dense and widespread intercolumnar network. J Neurosci 26(13):3434–3443

    PubMed  CAS  Google Scholar 

  • Furuta T, Tomioka R, Taki K, Nakamura K, Tamamaki N, Kaneko T (2001) In vivo transduction of central neurons using recombinant Sindbis virus: golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem 49(12):1497–1508

    PubMed  CAS  Google Scholar 

  • Furuta T, Timofeeva E, Nakamura K et al (2008) Inhibitory gating of vibrissal inputs in the brainstem. J Neurosci 28(8):1789–1797

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 402(6757):72–75

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292(5525):2295–2299

    PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (2002) Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. Proc Natl Acad Sci USA 99(19):12438–12443

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gascon S, Paez-Gomez JA, Diaz-Guerra M, Scheiffele P, Scholl FG (2008) Dual-promoter lentiviral vectors for constitutive and regulated gene expression in neurons. J Neurosci Methods 168(1):104–112

    PubMed  CAS  Google Scholar 

  • Gibson JR, Beierlein M, Connors BW (1999) Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402(6757):75–79

    PubMed  CAS  Google Scholar 

  • Gloster A, Wu W, Speelman A et al (1994) The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. J Neurosci 14(12):7319–7330

    PubMed  CAS  Google Scholar 

  • Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7(4):347–358

    PubMed  CAS  Google Scholar 

  • Gonchar Y, Wang Q, Burkhalter A (2007) Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front Neuroanat 1:3

    PubMed Central  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287(5451):273–278

    PubMed  CAS  Google Scholar 

  • Herzog E, Bellenchi GC, Gras C et al (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21(22):RC181

  • Hestrin S, Galarreta M (2005) Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci 28(6):304–309

    PubMed  CAS  Google Scholar 

  • Hioki H, Fujiyama F, Taki K et al (2003) Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 117(1):1–6

    PubMed  CAS  Google Scholar 

  • Hioki H, Fujiyama F, Nakamura K, Wu SX, Matsuda W, Kaneko T (2004) Chemically specific circuit composed of vesicular glutamate transporter 3- and preprotachykinin B-producing interneurons in the rat neocortex. Cereb Cortex 14(11):1266–1275

    PubMed  Google Scholar 

  • Hioki H, Kameda H, Nakamura H et al (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 14(11):872–882

    PubMed  CAS  Google Scholar 

  • Hioki H, Kuramoto E, Konno M et al (2009) High-level transgene expression in neurons by lentivirus with Tet-Off system. Neurosci Res 63(2):149–154

    PubMed  CAS  Google Scholar 

  • Hioki H, Nakamura H, Ma YF et al (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518(5):668–686

    PubMed  CAS  Google Scholar 

  • Hioki H, Okamoto S, Konno M et al (2013) Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron. J Neurosci 33(2):544–555

    PubMed  CAS  Google Scholar 

  • Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science 345(6196):1255263

    PubMed  Google Scholar 

  • Isomura Y, Harukuni R, Takekawa T, Aizawa H, Fukai T (2009) Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements. Nat Neurosci 12(12):1586–1593

    PubMed  CAS  Google Scholar 

  • Ito T, Hioki H, Nakamura K et al (2007) Gamma-aminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol 502(1):113–125

    PubMed  CAS  Google Scholar 

  • Jinno S, Kosaka T (2004) Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal pathway in mice. J Comp Neurol 477(2):188–201

    PubMed  CAS  Google Scholar 

  • Johnson JK, Casagrande VA (1995) Distribution of calcium-binding proteins within the parallel visual pathways of a primate (Galago crassicaudatus). J Comp Neurol 356(2):238–260

  • Kameda H, Furuta T, Matsuda W et al (2008) Targeting green fluorescent protein to dendritic membrane in central neurons. Neurosci Res 61(1):79–91

    PubMed  CAS  Google Scholar 

  • Kameda H, Hioki H, Tanaka YH et al (2012) Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 35(6):838–854

    PubMed  Google Scholar 

  • Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42(4):243–250

    PubMed  CAS  Google Scholar 

  • Kaneko T, Murashima M, Lee T, Mizuno N (1998) Characterization of neocortical non-pyramidal neurons expressing preprotachykinins A and B: a double immunofluorescence study in the rat. Neuroscience 86(3):765–781

    PubMed  CAS  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444(1):39–62

    PubMed  CAS  Google Scholar 

  • Karube F, Kubota Y, Kawaguchi Y (2004) Axon branching and synaptic bouton phenotypes in GABAergic nonpyramidal cell subtypes. J Neurosci 24(12):2853–2865

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15(4):2638–2655

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31(3–5):277–287

    PubMed  Google Scholar 

  • Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindin D28 k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 70(1):387–396

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kubota Y (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 16(8):2701–2715

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kubota Y (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 7(6):476–486

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Kubota Y (1998) Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 85(3):677–701

    PubMed  CAS  Google Scholar 

  • Kinoshita M, Matsui R, Kato S et al (2012) Genetic dissection of the circuit for hand dexterity in primates. Nature 487(7406):235–238

    PubMed  CAS  Google Scholar 

  • Kubota Y (2014) Untangling GABAergic wiring in the cortical microcircuit. Curr Opin Neurobiol 26:7–14

    PubMed  CAS  Google Scholar 

  • Kubota Y, Kawaguchi Y (1997) Two distinct subgroups of cholecystokinin-immunoreactive cortical interneurons. Brain Res 752(1–2):175–183

    PubMed  CAS  Google Scholar 

  • Kubota Y, Hattori R, Yui Y (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 649(1–2):159–173

    PubMed  CAS  Google Scholar 

  • Kubota Y, Shigematsu N, Karube F et al (2011) Selective coexpression of multiple chemical markers defines discrete populations of neocortical GABAergic neurons. Cereb Cortex 21(8):1803–1817

    PubMed  Google Scholar 

  • Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex 19(9):2065–2077

    PubMed  Google Scholar 

  • Kuramoto E, Ohno S, Furuta T et al (2013) Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior-ventral lateral nuclear complex in the rat. Cereb Cortex. doi:10.1093/cercor/bht216

  • Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16(11):1662–1670

    PubMed Central  PubMed  CAS  Google Scholar 

  • Letzkus JJ, Wolff SB, Meyer EM et al (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335

    PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    PubMed  CAS  Google Scholar 

  • Lewis DA, Curley AA, Glausier JR, Volk DW (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67

    PubMed Central  PubMed  CAS  Google Scholar 

  • Li L, Suzuki T, Mori N, Greengard P (1993) Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci USA 90(4):1460–1464

    PubMed Central  PubMed  CAS  Google Scholar 

  • Ma Y, Hioki H, Konno M et al (2011) Expression of gap junction protein connexin36 in multiple subtypes of GABAergic neurons in adult rat somatosensory cortex. Cereb Cortex 21(11):2639–2649

    PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5(10):793–807

    PubMed  CAS  Google Scholar 

  • Matsuda W, Furuta T, Nakamura KC et al (2009) Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29(2):444–453

    PubMed  CAS  Google Scholar 

  • Matsuzaki Y, Oue M, Hirai H (2014) Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter. J Neurosci Methods 223:133–143

    PubMed  CAS  Google Scholar 

  • Mayford M, Baranes D, Podsypanina K, Kandel ER (1996) The 3′-untranslated region of CaMKII alpha is a cis-acting signal for the localization and translation of mRNA in dendrites. Proc Natl Acad Sci USA 93(23):13250–13255

    PubMed Central  PubMed  CAS  Google Scholar 

  • Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22(16):7055–7064

    PubMed  CAS  Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mizunuma M, Norimoto H, Tao K et al (2014) Unbalanced excitability underlies offline reactivation of behaviorally activated neurons. Nat Neurosci 17(4):503–505

    PubMed  CAS  Google Scholar 

  • Moriyama H, Moriyama M, Sawaragi K et al (2013) Tightly regulated and homogeneous transgene expression in human adipose-derived mesenchymal stem cells by lentivirus with tet-off system. PLoS One 8(6):e66274

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakamura K, Matsumura K, Hübschle T et al (2004) Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermoregulatory functions. J Neurosci 24(23):5370–5380

    PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    PubMed  CAS  Google Scholar 

  • Nishino E, Yamada R, Kuba H et al (2008) Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization. J Neurosci 28(28):7153–7164

    PubMed  CAS  Google Scholar 

  • Ohno S, Kuramoto E, Furuta T et al (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex 22(12):2840–2857

    PubMed  Google Scholar 

  • Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20(9):3354–3368

    PubMed  CAS  Google Scholar 

  • Orekhova EV, Stroganova TA, Nygren G et al (2007) Excess of high frequency electroencephalogram oscillations in boys with autism. Biol Psychiatry 62(9):1022–1029

    PubMed  Google Scholar 

  • Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M (2013) Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci 16(8):1068–1076

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pi HJ, Hangya B, Kvitsiani D, Sanders JI, Huang ZJ, Kepecs A (2013) Cortical interneurons that specialize in disinhibitory control. Nature 503(7477):521–524

    PubMed Central  PubMed  CAS  Google Scholar 

  • Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 100(4):2348–2360

    PubMed Central  PubMed  CAS  Google Scholar 

  • Preuss TM, Kaas JH (1996) Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates. Brain Res 712(2):353–357

    PubMed  CAS  Google Scholar 

  • Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24(9):517–526

    PubMed  CAS  Google Scholar 

  • Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011) Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol 71(1):45–61

    PubMed Central  PubMed  Google Scholar 

  • Sasahara M, Fries JW, Raines EW et al (1991) PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell 64(1):217–227

    PubMed  CAS  Google Scholar 

  • Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459(7247):698–702

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sohn J, Hioki H, Okamoto S, Kaneko T (2014) Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex. J Comp Neurol 522(7):1506–1526

    PubMed  CAS  Google Scholar 

  • Somogyi P (1977) A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res 136(2):345–350

    PubMed  CAS  Google Scholar 

  • Somogyi P, Klausberger T (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 562(1):9–26

    PubMed Central  PubMed  CAS  Google Scholar 

  • Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 26(2–3):113–135

    PubMed  CAS  Google Scholar 

  • Spatz WB, Illing RB, Weisenhorn DM (1994) Distribution of cytochrome oxidase and parvalbumin in the primary visual cortex of the adult and neonate monkey, Callithrix jacchus. J Comp Neurol 339(4):519–534

  • Stichel CC, Singer W, Heizmann CW, Norman AW (1987) Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D28 k, in the adult and developing visual cortex of cats: a light and electron microscopic study. J Comp Neurol 262(4):563–577

    PubMed  CAS  Google Scholar 

  • Taki K, Kaneko T, Mizuno N (2000) A group of cortical interneurons expressing mu-opioid receptor-like immunoreactivity: a double immunofluorescence study in the rat cerebral cortex. Neuroscience 98(2):221–231

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Nakamura K, Furuta T, Asamoto K, Kaneko T (2000) Neurons in Golgi-stain-like images revealed by GFP-adenovirus infection in vivo. Neurosci Res 38(3):231–236

    PubMed  CAS  Google Scholar 

  • Tamas G, Buhl EH, Somogyi P (1997) Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. J Physiol 500(3):715–738

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tamas G, Somogyi P, Buhl EH (1998) Differentially interconnected networks of GABAergic interneurons in the visual cortex of the cat. J Neurosci 18(11):4255–4270

    PubMed  CAS  Google Scholar 

  • Tamas G, Buhl EH, Lorincz A, Somogyi P (2000) Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat Neurosci 3(4):366–371

    PubMed  CAS  Google Scholar 

  • Tanahira C, Higo S, Watanabe K et al (2009) Parvalbumin neurons in the forebrain as revealed by parvalbumin-Cre transgenic mice. Neurosci Res 63(3):213–223

    PubMed  CAS  Google Scholar 

  • Tanaka YH, Tanaka YR, Fujiyama F, Furuta T, Yanagawa Y, Kaneko T (2011a) Local connections of layer 5 GABAergic interneurons to corticospinal neurons. Front Neural Circuits 5:12

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tanaka YR, Tanaka YH, Konno M et al (2011b) Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex. J Neurosci 31(50):18223–18236

    PubMed  CAS  Google Scholar 

  • Thomson AM, Lamy C (2007) Functional maps of neocortical local circuitry. Front Neurosci 1(1):19–42

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thomson AM, West DC, Hahn J, Deuchars J (1996) Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex. J Physiol 496(1):81–102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tomioka R, Rockland KS (2006) Improved Golgi-like visualization in retrogradely projecting neurons after EGFP-adenovirus infection in adult rat and monkey. J Histochem Cytochem 54(5):539–548

    PubMed  CAS  Google Scholar 

  • Tomioka R, Rockland KS (2007) Long-distance corticocortical GABAergic neurons in the adult monkey white and gray matter. J Comp Neurol 505(5):526–538

    PubMed  Google Scholar 

  • Tomko RP, Johansson CB, Totrov M, Abagyan R, Frisén J, Philipson L (2000) Expression of the adenovirus receptor and its interaction with the fiber knob. Exp Cell Res 255(1):47–55

    PubMed  CAS  Google Scholar 

  • Toribio R, Ventoso I (2010) Inhibition of host translation by virus infection in vivo. Proc Natl Acad Sci USA 107(21):9837–9842

    PubMed Central  PubMed  CAS  Google Scholar 

  • Uematsu M, Hirai Y, Karube F et al (2008) Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats. Cereb Cortex 18(2):315–330

    PubMed  Google Scholar 

  • van Brederode JF, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium-binding proteins parvalbumin and calbindin-D28 k in the sensorimotor cortex of the rat. Neuroscience 44(1):157–171

    PubMed  Google Scholar 

  • Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22(1):142–155

    PubMed  CAS  Google Scholar 

  • Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex 12(4):395–410

    PubMed  Google Scholar 

  • Watakabe A, Kato S, Kobayashi K et al (2012) Visualization of cortical projection neurons with retrograde TET-off lentiviral vector. PLoS One 7(10):e46157

    PubMed Central  PubMed  CAS  Google Scholar 

  • Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373(6515):612–615

    PubMed  CAS  Google Scholar 

  • Williams SR, Stuart GJ (2003) Voltage- and site-dependent control of the somatic impact of dendritic IPSPs. J Neurosci 23(19):7358–7367

    PubMed  CAS  Google Scholar 

  • Woodruff A, Xu Q, Anderson SA, Yuste R (2009) Depolarizing effect of neocortical chandelier neurons. Frontiers in neural circuits 3:15

    PubMed Central  PubMed  Google Scholar 

  • Wouterlood FG, Hartig W, Bruckner G, Witter MP (1995) Parvalbuminimmunoreactive neurons in the entorhinal cortex of the rat: localization, morphology, connectivity and ultrastructure. J Neurocytol 24(2):135–153

    PubMed  CAS  Google Scholar 

  • Xu X, Roby KD, Callaway EM (2006) Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J Comp Neurol 499(1):144–160

    PubMed  CAS  Google Scholar 

  • Xu X, Roby KD, Callaway EM (2010) Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J Comp Neurol 518(3):389–404

    PubMed Central  PubMed  Google Scholar 

  • Yin DX, Zhu L, Schimke RT (1996) Tetracycline-controlled gene expression system achieves high-level and quantitative control of gene expression. Anal Biochem 235(2):195–201

    PubMed  CAS  Google Scholar 

  • Zaiss AK, Son S, Chang LJ (2002) RNA 3′ readthrough of oncoretrovirus and lentivirus: implications for vector safety and efficacy. J Virol 76(14):7209–7219

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kröner S, Lewis DA, Krimer LS (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex 15(8):1178–1186

    PubMed  CAS  Google Scholar 

  • Zaitsev AV, Povysheva NV, Gonzalez-Burgos G et al (2009) Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex 19(7):1597–1615

    PubMed Central  PubMed  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15(9):871–875

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author greatly thanks Prof. Takeshi Kaneko and the lab members at the Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University for their valuable discussions and collaborations. This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas “Neural Diversity and Neocortical Organization” (25123709) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) and a Grant-in-Aid for Scientific Research (C) (24500408) from the Japan Society for the Promotion of Science (JSPS). The author received the Incitement Award of the Japanese Association of Anatomists in Japan for the fiscal year 2013, and gave a presentation of the present review at the 119th Annual Meeting in Shimono, Japan on March 28, 2014.

Conflict of interest

The author has no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Hioki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hioki, H. Compartmental organization of synaptic inputs to parvalbumin-expressing GABAergic neurons in mouse primary somatosensory cortex. Anat Sci Int 90, 7–21 (2015). https://doi.org/10.1007/s12565-014-0264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-014-0264-8

Keywords

Navigation