Skip to main content

Advertisement

Log in

Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease

  • S.I. : Organ Failure and Transplantation
  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

We are motivated by the chronic renal insufficiency cohort (CRIC) study to identify risk factors for renal progression in patients with chronic kidney diseases. The CRIC study collects two types of renal outcomes: glomerular filtration rate (GFR) estimated annually and end-stage renal disease (ESRD). A related outcome of interest is death which is a competing event for ESRD. A joint modeling approach is proposed to model a longitudinal outcome and two competing survival outcomes. We assume multivariate normality on the joint distribution of the longitudinal and survival outcomes. Specifically, a mixed effects model is fit on the longitudinal outcome and a linear model is fit on each survival outcome. The three models are linked together by having the random terms of the mixed effects model as covariates in the survival models. EM algorithm is used to estimate the model parameters, and the nonparametric bootstrap is used for variance estimation. A simulation study is designed to compare the proposed method with an approach that models the outcomes sequentially in two steps. We fit the proposed model to the CRIC data and show that the protein-to-creatinine ratio is strongly predictive of both estimated GFR and ESRD but not death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anderson AH, Yang W, Hsu C-Y, Joffe MM, Leonard MB, Xie D, Chen J, Greene T, Jaar BG, Kao P et al (2012) Estimating gfr among participants in the chronic renal insufficiency cohort (cric) study. Am J Kidney Dis 60(2):250–261

    Article  Google Scholar 

  2. Andrinopoulou E-R, Rizopoulos D, Takkenberg JJM, Lesaffre E (2014) Joint modeling of two longitudinal outcomes and competing risk data. Stat Med 33(18):3167–3178

    Article  MathSciNet  Google Scholar 

  3. Coresh J, Turin T, Matsushita K et al (2014) Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA 311(24):2518–2531

  4. DeGruttola V, Tu XM (1994) Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 50(4):1003–1014

    Article  MATH  Google Scholar 

  5. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J R Stat Soc Ser B (methodological) 39:1–38

  6. Deslandes E, Chevret S (2010) Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data. BMC Med Res Methodol 10(1):69

    Article  Google Scholar 

  7. Diggle P, Kenward MG (1994) Informative drop-out in longitudinal data analysis. J R Stat Soc Ser C (Applied Statistics) 43(1):49–93

    MATH  Google Scholar 

  8. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC Press, Boca Raton

  9. Elashoff RM, Li G, Li N (2007) An approach to joint analysis of longitudinal measurements and competing risks failure time data. Stat Med 26(14):2813–2835

    Article  MathSciNet  Google Scholar 

  10. Feldman HI, Appel LJ, Chertow GM, Cifelli D, Cizman B, Daugirdas J, Fink JC, Franklin-Becker ED, Go AS, Hamm LL et al (2003) The chronic renal insufficiency cohort (cric) study: design and methods. J Am Soc Nephrol 14(suppl 2):S148–S153

    Article  Google Scholar 

  11. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94(446):496–509

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo X, Carlin BP (2004) Separate and joint modeling of longitudinal and event time data using standard computer packages. Am Stat 58(1):16–24

    Article  MathSciNet  Google Scholar 

  13. Hillis SL (1995) Residual plots for the censored data linear regression model. Stat Med 14(18):2023–2036

    Article  Google Scholar 

  14. Hogan JW, Roy J, Korkontzelou C (2004) Handling drop-out in longitudinal studies. Stat Med 23(9):1455–1497

    Article  Google Scholar 

  15. Hsieh F, Tseng Y-K, Wang J-L (2006) Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics 62(4):1037–1043

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang X, Li G, Elashoff RM, Pan J (2011) A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects. Lifetime Data Anal 17:80–100

    Article  MathSciNet  MATH  Google Scholar 

  17. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G (1994) The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. N Engl J Med 330(13):877–884

    Article  Google Scholar 

  18. Koller MT, Raatz H, Steyerberg EW, Wolbers M (2012) Competing risks and the clinical community: irrelevance or ignorance? Stat Med 31(11–12):1089–1097

    Article  MathSciNet  Google Scholar 

  19. Law M, Jackson D (2015) Residual plots for linear regression models with censored outcome data: a refined method for visualising residual uncertainty. Commun Stat Simul Comput. doi:10.1080/03610918.2015.1076470

  20. Leung K-M, Elashoff RM, Afifi AA (1997) Censoring issues in survival analysis. Annu Rev Public Health 18(1):83–104

    Article  Google Scholar 

  21. Li L, Hu B, Greene T (2009) A semiparametric joint model for longitudinal and survival data with application to hemodialysis study. Biometrics 65(3):737–745

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu L, Ma JZ, O’Quigley J (2008) Joint analysis of multi-level repeated measures data and survival: an application to the end stage renal disease (esrd) data. Stat Med 27(27):5679–5691

    Article  MathSciNet  Google Scholar 

  23. Prentice RL, Kalbfleisch JD, Peterson AV Jr, Flournoy N, Farewell V, Breslow N (1978) The analysis of failure times in the presence of competing risks. Biometrics 34:541–554

  24. Ratcliffe SJ, Guo W, Ten Have TR (2004) Joint modeling of longitudinal and survival data via a common frailty. Biometrics 60(4):892–899

    Article  MathSciNet  MATH  Google Scholar 

  25. Rizopoulos D (2010) Joint modelling of longitudinal and time-to-event data: challenges and future directions. In: 45th Scientific meeting of the Italian statistical society. Universitadi Padova, Padova

  26. Rosansky SJ, Glassock RJ (2014) Is a decline in estimated gfr an appropriate surrogate end point for renoprotection trials & quest. Kidney Int 85(4):723–727

    Article  Google Scholar 

  27. Schluchter MD (1992) Methods for the analysis of informatively censored longitudinal data. Stat Med 11(14–15):1861–1870

    Article  Google Scholar 

  28. Song X, Davidian M, Tsiatis AA (2002) A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58(4):742–753

    Article  MathSciNet  MATH  Google Scholar 

  29. Stevens LA, Greene T, Levey AS (2006) Surrogate end points for clinical trials of kidney disease progression. Clin J Am Soc Nephrol 1(4):874–884

    Article  Google Scholar 

  30. Taylor JMG, Park Y, Ankerst DP, Proust-Lima C, Williams S, Kestin L, Bae K, Pickles T, Sandler H (2013) Real-time individual predictions of prostate cancer recurrence using joint models

  31. Trautmann H, Steuer D, Mersmann O, Bornkamp B (2014) truncnorm: truncated normal distribution. R package version 1.0-7

  32. Tseng Y-K, Hsieh F, Wang J-L (2005) Joint modelling of accelerated failure time and longitudinal data. Biometrika 92(3):587–603

    Article  MathSciNet  MATH  Google Scholar 

  33. Tsiatis A (1975) A nonidentifiability aspect of the problem of competing risks. Proc Nat Acad Sci 72(1):20–22

    Article  MathSciNet  MATH  Google Scholar 

  34. Tsiatis AA, Davidian M (2001) A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88(2):447–458

    Article  MathSciNet  MATH  Google Scholar 

  35. Tsiatis AA, Davidian M (2004) Joint modeling of longitudinal and time-to-event data: an overview. Stat Sin 14(3):809–834

    MathSciNet  MATH  Google Scholar 

  36. Tsiatis AA, DeGruttola V, Wulfsohn MS (1995) Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc 90(429):27

    Article  MATH  Google Scholar 

  37. Vonesh EF, Greene T, Schluchter MD (2006) Shared parameter models for the joint analysis of longitudinal data and event times. Stat Med 25(1):143–163

    Article  MathSciNet  Google Scholar 

  38. Wang Y, Taylor JMG (2001) Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 96(455):895–905

  39. Wilhelm S, Manjunath BG (2015) tmvtnorm: truncated multivariate normal and student t distribution. R package version 1.4-10

  40. Williamson PR, Kolamunnage-Dona R, Philipson P, Marson AG (2008) Joint modelling of longitudinal and competing risks data. Stat Med 27(30):6426–6438

    Article  MathSciNet  Google Scholar 

  41. Wright JT Jr, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, Cheek D, Douglas-Baltimore JG, Gassman J, Glassock R et al (2002) Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the aask trial. JAMA 288(19):2421–2431

    Article  Google Scholar 

  42. Wu L, Liu W, Yi GY, Huang Y (2012) Analysis of longitudinal and survival data: joint modeling, inference methods, and issues. J Probab Stat 1–17:2012

    MathSciNet  MATH  Google Scholar 

  43. Yu M, Law NJ, Taylor JM, Sandler HM (2004) Joint longitudinal-survival-cure models and their application to prostate cancer. Stat Sin 14(3):835–862

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Wei Yang, Dawei Xie, Qiang Pan and Harold I. Feldman were supported by U01DK060990. Wensheng Guo was supported by R01GM104470. The authors thank the CRIC study patients, study coordinators, and investigators for their efforts. Other Grant Support: By the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (Cooperative Agreements U01DK060984, U01DK061022, U01DK061021, U01DK061028, U01DK060980, U01DK060963, and U01DK060902) and in part by the following institutional Clinical Translational Science Awards from the National Center for Advancing Translational Sciences and other National Institutes of Health Grants: University of Pennsylvania (UL1TR000003, K01DK092353, and K24DK002651), Johns Hopkins University (UL1 TR-000424), University of Maryland General Clinical Research Center (M01RR-16500), Clinical and Translational Science Collaborative of Cleveland (UL1TR000439), Michigan Institute for Clinical and Health Research (UL1TR000433), University of Illinois at Chicago (UL1RR029879), Tulane University Translational Research in Hypertension and Renal Biology (P30GM103337), and Kaiser Permanente National Institutes of Health/National Center for Research Resources University of California, San Francisco Clinical and Translational Science Institute (UL1RR-024131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Appendices

Appendix 1: Covariance Matrix for the Joint Distribution

According to models (1) and (2), we have

$$\begin{aligned}&Cov\left( {\begin{array}{*{20}{c}} b\\ \epsilon \\ {{r_1}}\\ {{r_2}}\\ y\\ \begin{array}{l} {x_1}\\ {x_2} \end{array} \end{array}} \right) \\&\quad = \left( {\begin{array}{*{20}{c}} D&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad {D{Z^T}}&{}\quad {D{\lambda _1}}&{}\quad {D{\lambda _2}}\\ 0&{}\quad {{\sigma ^2}I}&{}\quad 0&{}\quad 0&{}\quad {{\sigma ^2}I}&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad {s_1^2}&{}\quad 0&{}\quad 0&{}\quad {s_1^2}&{}\quad 0\\ 0&{}\quad 0&{}\quad 0&{}\quad {s_2^2}&{}\quad 0&{}\quad 0&{}\quad {s_2^2}\\ {ZD}&{}\quad {{\sigma ^2}I}&{}\quad 0&{}\quad 0&{}\quad {ZD{Z^T} + {\sigma ^2}I}&{}\quad {ZD{\lambda _1}}&{}\quad {ZD{\lambda _2}}\\ {\lambda _1^TD}&{}\quad 0&{}\quad {s_1^2}&{}\quad 0&{}\quad {\lambda _1^TD{Z^T}}&{}\quad {\lambda _1^TD{\lambda _1} + s_1^2}&{}\quad {\lambda _1^TD{\lambda _2}}\\ {\lambda _2^TD}&{}\quad 0&{}\quad 0&{}\quad {s_2^2}&{}\quad {\lambda _2^TD{Z^T}}&{}\quad {\lambda _2^TD{\lambda _1}}&{}\quad {\lambda _2^TD{\lambda _2} + s_2^2} \end{array}} \right) \end{aligned}$$

We suppress the subscript i for clarity.

Appendix 2: Expectation of the Sufficient Statistics

We first derive the expectations assuming both \(x_1\) and \(x_2\) are observed. We will then revise the formula accounting for the scenario when either or both \(x_1\) or \(x_2\) are censored. We use \(Y_{comp}\) to denote the full data including \(\mathbf {y}, x_1\) and \(x_2\).

According to models (1) and (2) and the covariance structure in the appendix, we have

$$\begin{aligned} \begin{array}{l} E\left( {b|Y_{comp},\hat{\theta }} \right) = {C_{12}}C_{22}^{ - 1}\left( {\begin{array}{*{20}{c}} {y - T\hat{\alpha }}\\ {{x_1} - {W^T}{{\hat{\xi }}_1}}\\ {{x_2} - {W^T}{{\hat{\xi }}_2}} \end{array}} \right) \\ Var\left( {b|Y_{comp},\hat{\theta }} \right) = \hat{D} - {C_{12}}C_{22}^{ - 1}C_{12}^T \end{array} \end{aligned}$$

where

$$\begin{aligned} {C_{12}} = \left( {\begin{array}{*{20}{c}} {\hat{D}{Z^T}}&{\hat{D}{{\hat{\lambda }}_1}}&{\hat{D}{{\hat{\lambda }}_2}} \end{array}} \right) \end{aligned}$$

and

$$\begin{aligned} {C_{22}} = \left( {\begin{array}{*{20}{c}} {Z\hat{D}{Z^T} + {{\hat{\sigma }}^2}I}&{}\quad {Z\hat{D}{{\hat{\lambda }}_1}}&{}\quad {Z\hat{D}{{\hat{\lambda }}_2}}\\ {\hat{\lambda }_1^T\hat{D}{Z^T}}&{}\quad {\hat{\lambda }_1^T\hat{D}{{\hat{\lambda }}_1} + \hat{s}_1^2}&{}\quad {\hat{\lambda }_1^T\hat{D}{{\hat{\lambda }}_2}}\\ {\hat{\lambda }_2^T\hat{D}{Z^T}}&{}\quad {\hat{\lambda }_2^T\hat{D}{{\hat{\lambda }}_1}}&{}\quad {\hat{\lambda }_2^T\hat{D}{{\hat{\lambda }}_2} + \hat{s}_2^2} \end{array}} \right) \end{aligned}$$

\(E\left( {b{b^T}|{Y_{comp}},\hat{\theta }} \right) \) can then be calculated as

$$\begin{aligned} E\left( {b{b^T}|{Y_{comp}},\hat{\theta }} \right) = E\left( {b|Y_{comp},\hat{\theta }} \right) {E^T}\left( {b|Y_{comp},\hat{\theta }} \right) + Var\left( {b|Y_{comp},\hat{\theta }} \right) \end{aligned}$$

In the case when either or both \(x_1\) and \(x_2\) are censored,\(E(b | Y _{obs}, \hat{\theta })\) and \(E(b b^T | Y _{obs}, \hat{\theta })\) can be calculated as follows. We have

$$\begin{aligned} E\left( {b|Y_{obs},\hat{\theta }} \right) = E\left\{ {E\left( {b|Y_{comp},\hat{\theta }} \right) |Y_{obs},\hat{\theta }} \right\} = E\left( \hat{b} |Y_{obs},\hat{\theta }\right) \end{aligned}$$

and

$$\begin{aligned} E\left( {b{b^T}|Y_{obs},\hat{\theta }} \right)= & {} E\left\{ {E\left( {b{b^T}|Y_{comp},\hat{\theta }} \right) |Y_{obs},\hat{\theta }} \right\} \\= & {} E\left\{ {E\left( {b|Y_{comp},\hat{\theta }} \right) {E^T}\left( {b|Y_{comp},\hat{\theta }} \right) {+} Var\left( {b|Y_{comp},\hat{\theta }} \right) |Y_{obs},\hat{\theta }} \right\} \\= & {} E\left( {\hat{b}{{\hat{b}}^T}|Y_{obs},\hat{\theta }} \right) + E\left\{ {Var\left( {b|Y_{comp},\hat{\theta }} \right) |Y_{obs},\hat{\theta }} \right\} \\= & {} E\left( {\hat{b}{{\hat{b}}^T}|Y_{obs},\hat{\theta }} \right) + Var\left( {b|Y_{comp},\hat{\theta }} \right) \end{aligned}$$

where \(\hat{b} = E\left( {b|Y_{comp},\hat{\theta }} \right) \). The last step follows because \(Var\left( {b|Y_{comp},\hat{\theta }} \right) \) is not a function of \(Y_{comp}\).

So the next step is to calculate \(E\left( {\hat{b}{{\hat{b}}^T}|Y_{obs},\hat{\theta }} \right) \). Since

$$\begin{aligned} \hat{b}{\hat{b}^T} = {C_{12}}C_{22}^{ - 1}\left( {\begin{array}{*{20}{c}} {y - T\hat{\alpha }}\\ {{x_1} - {W^T}{{\hat{\xi }}_1}}\\ {{x_2} - {W^T}{{\hat{\xi }}_2}} \end{array}} \right) {\left( {\begin{array}{*{20}{c}} {y - T\hat{\alpha }}\\ {{x_1} - {W^T}{{\hat{\xi }}_1}}\\ {{x_2} - {W^T}{{\hat{\xi }}_2}} \end{array}} \right) ^T}C_{22}^{ - 1}{C_{21}} \end{aligned}$$

we need to calculate \(E( {{x_1}|Y_{obs},\hat{\theta }})\), \(E( {{x_2}|Y_{obs},\hat{\theta }})\), \(E( {{x_1 ^2}|Y_{obs},\hat{\theta }})\), \(E( {{x_2 ^2}|Y_{obs},\hat{\theta }})\) and \(E( {{x_1 x_2}|Y_{obs},\hat{\theta }})\). See next section for the details of how to calculate these expectations under different scenarios. The calculation of \(E(\epsilon \epsilon ^T | Y_{obs}, \hat{\theta })\), \(E( {r_j^2|{Y_{obs}},\hat{\theta }} ),j=1,2\) can be done in a similar fashion.

To calculate \(E( x_jb|{Y_{obs}},\hat{\theta })\), \(j=1,2\), we have

$$\begin{aligned} E(x_jb|Y_{obs},\hat{\theta })= & {} E \left\{ E(x_j b |Y_{comp}, \hat{\theta })| Y_{obs}, \hat{\theta }\right\} \\= & {} E \left\{ x_j {C_{12}}C_{22}^{ - 1}\left( {\begin{array}{*{20}{c}} {y - T\hat{\alpha }}\\ {{x_1} - {W^T}{{\hat{\xi }}_1}}\\ {{x_2} - {W^T}{{\hat{\xi }}_2}} \end{array}} \right) | Y_{obs}, \hat{\theta }\right\} \end{aligned}$$

Again see next section for the calculation of \(E(x_1^2|Y_{obs}, \hat{\theta })\), \(E(x_2^2|Y_{obs}, \hat{\theta })\) and \(E(x_1x_2|Y_{obs}, \hat{\theta })\).

To summarize, here are the formulas to calculate these quantities.

  • \(E(b_i|Y_{obs}, \hat{\theta }) = C_{12}C_{22}^{-1}E(O_i)\)

  • \(E(b_i b_i ^T|Y_{obs}, \hat{\theta }) = C_{12}C_{22}^{-1}E(O_iO_i^T)C_{22}^{-1}C_{12}^T+ \hat{D} - C_{12}C_{22}^{-1}C_{12}^T\)

  • \(E(\epsilon _i \epsilon _i ^T|Y_{obs}, \hat{\theta }) = F_{12}C_{22}^{-1}E(O_iO_i^T)C_{22}^{-1}F_{12}^T+ \hat{\sigma }^2 I - F_{12}C_{22}^{-1}F_{12}^T\)

  • \(E(r_{i,1}^2 |Y_{obs}, \hat{\theta }) = G_{12}C_{22}^{-1}E(O_iO_i^T)C_{22}^{-1}G_{12}^T+ \hat{s}_1^2 - G_{12}C_{22}^{-1}G_{12}^T\)

  • \(E(r_{i,2}^2 |Y_{obs}, \hat{\theta }) = H_{12}C_{22}^{-1}E(O_iO_i^T)C_{22}^{-1}H_{12}^T+ \hat{s}_2^2 - H_{12}C_{22}^{-1}G_{12}^T\)

  • \(E(x_{i,1}b_i|Y_{obs},\hat{\theta }) = C_{12}C_{22}^{-1}E(x_{i,1}O_i)\)

  • \(E(x_{i,2}b_i|Y_{obs},\hat{\theta }) = C_{12}C_{22}^{-1}E(x_{i,2}O_i)\)

where

  • \({C_{12}} = ( {\begin{array}{*{20}{c}} {\hat{D}{Z^T}}&{\hat{D}{{\hat{\lambda }}_1}}&{\hat{D}{{\hat{\lambda }}_2}} \end{array}} )\)

  • \({F_{12}} = ( {\begin{array}{*{20}{c}} {{{\hat{\sigma }}^2} I}&\mathbf {0}&\mathbf {0} \end{array}} )\)

  • \({G_{12}} = ( {\begin{array}{*{20}{c}} \mathbf {0}&{\hat{s}_1^2}&0 \end{array}} )\)

  • \({H_{12}} = ( {\begin{array}{*{20}{c}} \mathbf {0}&0&{\hat{s}_2^2} \end{array}} )\)

  • \({C_{22}} = \left( {\begin{array}{*{20}{c}} {Z\hat{D}{Z^T} + {{\hat{\sigma }}^2}I}&{}\quad {Z\hat{D}{{\hat{\lambda }}_1}}&{}\quad {Z\hat{D}{{\hat{\lambda }}_2}}\\ {\hat{\lambda }_1^T\hat{D}{Z^T}}&{}\quad {\hat{\lambda }_1^T\hat{D}{{\hat{\lambda }}_1} + \hat{s}_1^2}&{}\quad {\hat{\lambda }_1^T\hat{D}{{\hat{\lambda }}_2}}\\ {\hat{\lambda }_2^T\hat{D}{Z^T}}&{}\quad {\hat{\lambda }_2^T\hat{D}{{\hat{\lambda }}_1}}&{}\quad {\hat{\lambda }_2^T\hat{D}{{\hat{\lambda }}_2} + \hat{s}_2^2} \end{array}} \right) \)

  • \(O_i=\left( {\begin{array}{*{20}{c}} {y_i - T\hat{\alpha }}\\ {{x_{i,1}} - {W^T}{{\hat{\xi }}_1}}\\ {{x_{i,2}} - {W^T}{{\hat{\xi }}_2}} \end{array}} \right) \)

Note that \(E(\epsilon _i ^T \epsilon _i |Y_{obs}, \hat{\theta })\) can be calculated by summing over the diagonal elements of \(E(\epsilon _i \epsilon _i ^T|Y_{obs}, \hat{\theta })\), i.e., \(E(\epsilon _i ^T \epsilon _i |Y_{obs}, \hat{\theta })=trace\{E(\epsilon _i \epsilon _i ^T|Y_{obs}, \hat{\theta })\}\).

Appendix 3: Calculation of the First Two Moments of x Given \(Y_{obs}\)

There are three types of individuals in the observed data: 1) those whose \(x_1\) are observed but not \(x_2\), i.e., \(x_1 < c, x_2 > c\); 2) those whose \(x_2\) are observed but not \(x_1\), i.e., \(x_1 > c, x_2 < c\); and 3) neither \(x_1\) nor \(x_2\) is observed, i.e, \(x_1> c, x_2 > c\). We now derive \(E( {{x_1}|Y_{obs},\hat{\theta }})\), \(E( {{x_2}|Y_{obs},\hat{\theta }})\), \(E( {{x_1 ^2}|Y_{obs},\hat{\theta }})\), \(E( {{x_2 ^2}|Y_{obs},\hat{\theta }})\) and \(E( {{x_1 x_2}|Y_{obs},\hat{\theta }})\) for each of the three scenarios.

1.1 Scenario I: \(x_2\) Alone is Censored

For the first scenario in which \(x_1\) is observed and \(x_2\) is censored, we have \(Y_{obs}=(\mathbf {y},x_1,x_2>c)\) and

  • \(E( {{x_1}|Y_{obs},\hat{\theta }})=x_1\)

  • \(E( {{x_1 ^2}|Y_{obs},\hat{\theta }})=x_1^2\)

  • \(E( {{x_2}|Y_{obs},\hat{\theta }}) = E(x_2|\mathbf {y},x_1,x_2>c, \hat{\theta })\)

  • \(E( {{x_1 x_2}|Y_{obs},\hat{\theta }})=x_1E( {{x_2}|\mathbf {y},x_1,x_2>c,\hat{\theta }})\)

  • \(E( {{x_2 ^2}|Y_{obs},\hat{\theta }}) = E^2(x_2|\mathbf {y},x_1,x_2>c, \hat{\theta }) + Var(x_2|\mathbf {y},x_1,x_2>c, \hat{\theta })\)

Because

$$\begin{aligned} E\left( {\begin{array}{*{20}{c}} {{x_2}}\\ {{x_1}}\\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {{W^T}{\xi _2}}\\ {{W^T}{\xi _1}}\\ {T\alpha } \end{array}} \right) \end{aligned}$$

and

$$\begin{aligned} Cov\left( {\begin{array}{*{20}{c}} {{x_2}}\\ {{x_1}}\\ y \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {\lambda _2^TD{\lambda _2} + s_2^2}&{}\quad {\lambda _2^TD{\lambda _1}}&{}\quad {\lambda _2^TD{Z^T}}\\ {\lambda _1^TD{\lambda _2}}&{}\quad {\lambda _1^TD{\lambda _1} + s_1^2}&{}\quad {\lambda _1^TD{Z^T}}\\ {ZD{\lambda _2}}&{}\quad {ZD{\lambda _1}}&{}\quad {ZD{Z^T} + {\sigma ^2}I} \end{array}} \right) \end{aligned}$$

we have

$$\begin{aligned} E(x_2|x_1,\mathbf {y}, \hat{\theta }) = W^T \xi _2 + K_{12} K_{22} ^ {-1} \left( \begin{array}{c} {x_1 - W^T \hat{\xi }_1} \\ {y - T \hat{\alpha }} \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} Var(x_2|x_1,y,\hat{\theta }) = \hat{\lambda }_2 ^ T\ D \hat{\lambda }_ 2 + \hat{s}_2^2 - K_{12}K_{22} ^ {-1}\ K_{12}^T \end{aligned}$$

where \(K_{12} = (\hat{\lambda }_2 ^T D \hat{\lambda }_1, \hat{\lambda }_2 ^T D Z^T )\) and \(K_{22} = \left( {\begin{array}{*{20}{c}} {\hat{\lambda }_1^T \hat{D}{\hat{\lambda }_1} + \hat{s}_1^2}&{}{\hat{\lambda }_1^T \hat{D}{Z^T}}\\ {Z \hat{D}{\hat{\lambda }_1}}&{}{Z \hat{D}{Z^T} + {\hat{\sigma }^2}I} \end{array}} \right) \).

So the calculation of \( E(x_2|\mathbf {y},x_1,x_2>c, \hat{\theta })\) and \( Var(x_2|\mathbf {y},x_1,x_2>c, \hat{\theta })\) can be done based on the truncated normal distribution property. In R, this can be done easily using the truncnorm package [31].

1.2 Scenario II: \(x_1\) Alone is Censored

Similarly, for the second scenario in which \(x_2\) is observed and \(x_1\) is censored, we have \(Y_{obs}=(\mathbf {y},x_1>c,x_2)\) and

  • \(E( {{x_2}|Y_{obs},\hat{\theta }})=x_2\)

  • \(E( {{x_2 ^2}|Y_{obs},\hat{\theta }})=x_2^2\)

  • \(E( {{x_1}|Y_{obs},\hat{\theta }}) = E(x_1|\mathbf {y},x_1>c,x_2, \hat{\theta })\)

  • \(E( {{x_1 x_2}|Y_{obs},\hat{\theta }})=x_2E( {{x_1}|\mathbf {y},x_1>c,x_2,\hat{\theta }})\)

  • \(E( {{x_1 ^2}|Y_{obs},\hat{\theta }}) = E^2(x_1|\mathbf {y},x_1>c,x_2, \hat{\theta }) + Var(x_1|\mathbf {y},x_1>c,x_2, \hat{\theta })\)

To calculate \( E(x_1|\mathbf {y},x_2,x_1>c, \hat{\theta })\) and \( Var(x_1|\mathbf {y},x_2,x_1>c, \hat{\theta })\), we have

$$\begin{aligned} E(x_1|x_2,\mathbf {y}, \hat{\theta }) = W^T \hat{\xi }_1 + P_{12} P_{22} ^ {-1} \left( \begin{array}{c} {x_2 - W^T \hat{\xi }_2} \\ {y - T \hat{\alpha }} \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} Var(x_1|x_2,\mathbf {y},\hat{\theta }) = \hat{\lambda }_1 ^ T\ D \hat{\lambda }_ 1 + \hat{s}_1^2 - P_{12}P_{22} ^ {-1}\ P_{12}^T \end{aligned}$$

where \(P_{12} = (\hat{\lambda }_1 ^T D \hat{\lambda }_2, \hat{\lambda }_1 ^T D Z^T )\) and \(P_{22} = \left( {\begin{array}{*{20}{c}} {\hat{\lambda }_2^T \hat{D}{\hat{\lambda }_2} + \hat{s}_2^2}&{}{\hat{\lambda }_2^T \hat{D}{Z^T}}\\ {Z \hat{D}{\hat{\lambda }_2}}&{}{Z \hat{D}{Z^T} + {\hat{\sigma }^2}I} \end{array}} \right) \).

1.3 Scenario III: Both \(x_1\) and \(x_2\) are Censored

When both \(x_1\) and \(x_2\) are censored, i.e, \(x_1>c\) and \(x_2>c\),

  • \(E( {{x_1}|Y_{obs},\hat{\theta }}) = E(x_1|\mathbf {y},x_1>c,x_2>c, \hat{\theta })\)

  • \(E( {{x_1 ^2}|Y_{obs},\hat{\theta }}) = E^2(x_1|\mathbf {y},x_1>c,x_2>c, \hat{\theta }) + Var(x_1|\mathbf {y},x_1>c,x_2>c, \hat{\theta })\)

  • \(E( {{x_2}|Y_{obs},\hat{\theta }}) = E(x_2|\mathbf {y},x_1>c,x_2>c, \hat{\theta })\)

  • \(E( {{x_2 ^2}|Y_{obs},\hat{\theta }}) = E^2(x_2|\mathbf {y},x_1>c,x_2>c, \hat{\theta }) + Var(x_2|\mathbf {y},x_1>c,x_2>c, \hat{\theta })\)

  • \(E( {{x_1 x_2}|Y_{obs},\hat{\theta }})=Cov( {{x_1x_2}|\mathbf {y},x_1>c,x_2>c,\hat{\theta }}) + E(x_1|\mathbf {y},x_1>c,x_2>c, \hat{\theta })*E(x_2|\mathbf {y},x_1>c,x_2>c, \hat{\theta })\)

We have

$$\begin{aligned} E\left( \begin{array}{c} x_1 \\ x_2 \end{array} |\mathbf {y}, \hat{\theta }\right) = \left( \begin{array}{c} W^T \hat{\xi }_1 \\ W^T \hat{\xi }_2 \end{array} \right) + Q_{12} Q_{22} ^ {-1} \left( {y - T \hat{\alpha }} \right) \end{aligned}$$

and

$$\begin{aligned} Var\left( \begin{array}{c} x_1 \\ x_2 \end{array} |y,\hat{\theta }\right) = \left( \begin{array}{cc}\hat{\lambda }_1^T \hat{D} \hat{\lambda }_1 + \hat{s}_1^2 &{}\quad \hat{\lambda }_1 ^ T \hat{D} \hat{\lambda }_2 \\ \hat{\lambda }_2 ^ T \hat{D} \hat{\lambda }_1 &{}\quad \hat{\lambda }_2^T \hat{D} \hat{\lambda }_2 + \hat{s}_2^2 \end{array} \right) - Q_{12}Q_{22} ^ {-1} Q_{12}^T \end{aligned}$$

where \(Q_{12} = (\hat{\lambda }_1 ^T D Z^T, \hat{\lambda }_2 ^T D Z^T )^T\) and \(Q_{22} = Z \hat{D}{Z^T} + {\hat{\sigma }^2}I\). R package tmvtnorm [39] can then be used to calculate the mean and covariance of the truncated variables.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Xie, D., Pan, Q. et al. Joint Modeling of Repeated Measures and Competing Failure Events in a Study of Chronic Kidney Disease. Stat Biosci 9, 504–524 (2017). https://doi.org/10.1007/s12561-016-9186-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-016-9186-4

Keywords

Navigation