Skip to main content
Log in

Modeling and experimental verification for non-equibiaxial residual stress evaluated by Knoop indentations

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Surface residual stress is usually characterized by two parameters; (1) magnitude and (2) direction of two principal residual stresses. We propose a novel way to evaluate these parameters by instrumented indentation testing (IIT) using a Knoop indenter, which has two-fold symmetry. Non-equibiaxial surface stress causes a shift from residual stress in the force-indentation depth curve of IIT that depends on the Knoop indentation in-plane angle between residual stress and long diagonal of Knoop indenter. We develop a theoretical model to evaluate surface residual stress using only experimental parameters obtained by four Knoop IITs at 45° rotated angles, by introducing mathematical definition of conversion factor, a, which ratio of normal and parallel conversion factors was known as constants (~0.34) on previous studies. We verify this model by Knoop IITs on four metallic cruciform samples in which the surface residual stress is controlled by bending. Experimental results of principal stress and direction show good agreements with applied stress and directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-H. Lee and D. Kwon, Acta Mater. 52, 1555 (2004).

    Article  Google Scholar 

  2. J.-I. Jang, J. Ceram. Process. Res. 10, 391 (2009).

    Google Scholar 

  3. Y.-H. Lee, J. S. Park, Y.-i. Kim, and Y.-H. Huh, Korean J. Met. Mater. 53, 90 (2015).

    Google Scholar 

  4. G. Sines and R. Carlson, ASTM Bulletin 180, February, 35 (1952).

    Google Scholar 

  5. A. Bolshakov, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 760 (1996).

    Article  Google Scholar 

  6. T. Y. Tsui, W. C. Oliver, and G. M. Pharr, J. Mater. Res. 11, 752 (1996).

    Article  Google Scholar 

  7. Y.-H. Lee and D. Kwon, J. Mater. Res. 17, 901 (2002).

    Article  Google Scholar 

  8. S. K. Kang, J. Y. Kim, C. P. Park, H. U. Kim, and D. Kwon, J. Mater. Res. 25, 337 (2010).

    Article  Google Scholar 

  9. J. Frankel, A. Abbate, and W. Scholz, Exp. Mech. 33, 164 (1993).

    Article  Google Scholar 

  10. W. R. Lafontaine, C. A. Paszkiet, M. A. Korhonen, and C.-Y. Li, J. Mater. Res. 6, 2084 (1991).

    Article  Google Scholar 

  11. A. V. Zagrebelny and C. B. Carter, Scripta Mater. 37, 1869 (1997).

    Article  Google Scholar 

  12. S. Suresh and A. E. Giannakopoulos, Acta Mater. 46, 5755 (1998).

    Article  Google Scholar 

  13. J. H. Han, J.-S. Lee, M.-J. Choi, G. Lee, K.-H. Kim, and D. Kwon, Key Engineering. 345-346, 1125 (2007).

    Article  Google Scholar 

  14. M.-J. Choi, S.-K. Kang, I. Kang, and D. Kwon, J. Mater. Res. 27, 1 (2011).

    Article  Google Scholar 

  15. Y.-C. Kim, M.-J. Choi, D. Kwon, and J.-Y. Kim, Met. Mater. Int. 21, 850 (2015).

    Article  Google Scholar 

  16. E. K. Girija, G. R. Sivakumar, S. Narayana Kalkura, P. Ramasamy, D. R. Joshi, and P. B. Sivaraman, Mat. Chem. Phys. 63, 50 (2000).

    Article  Google Scholar 

  17. D. Tabor, The Hardness of Metals, pp. 105–106, Oxford, New York (1951).

    Google Scholar 

  18. Y.-H. Lee, Y. Kim, Y.-C. Kim, J.-Y. Kim, and J.-I. Jang, Met. Mater. Int. 20, 439 (2014).

    Article  Google Scholar 

  19. STM E8 / E8M-15a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, PA (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju-Young Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YC., Ahn, HJ., Kwon, D. et al. Modeling and experimental verification for non-equibiaxial residual stress evaluated by Knoop indentations. Met. Mater. Int. 22, 12–19 (2016). https://doi.org/10.1007/s12540-015-5515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5515-2

Keywords

Navigation