Skip to main content

Advertisement

Log in

Monitoring rangeland ground cover vegetation using multitemporal MODIS data

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The aim of the present research is to monitor changes in herbage production during the grazing season in the Semirom and Brojen regions, Iran, using multitemporal Moderate Resolution Imaging Spectroradiometer (MODIS) data. At first, various preprocessing steps were applied to a topography map. The atmospheric and topographic corrections were applied using subtraction of the dark object method and the Lambert method. Image processing, including false-color composite, principal component analysis, and vegetation indices were employed to produce land use and pasture production maps. Vegetation sampling was carried out over a period of 4 months during June–September 2008, using a stratified random sampling method. Twenty random sampling points were selected, and herbage production was estimated and verified with the double-checking method. Four MODIS data sets were used in this study. The models for image processing and integrating ground data with satellite images were processed, and the resulting images were categorized into seven classes. Finally, the land covers were verified for accuracy. A postclassification analysis was carried out to verify the seven class change detections. The results confirmed that Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) maps had a close relationship with the field data. The indices produced with shortwave infrared bands had a close relationship with field data where the ground cover and yields were high. The R 2 value observed was 0.85. The changes in the pasture vegetation were high during the growing season in more than 90 % of the pastures. During the growing season, most changes in the pastures belonged to class 5 and 2 in the NDVI and SAVI index maps, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akiyama T, Kawamura K (2007) Grassland degradation in China: methods of monitoring, management and restoration. Grass Sci 53(1):1–17

    Article  Google Scholar 

  • Amiri F, Shariff ARBM (2010) Using remote sensing data for vegetation cover assessment in semi-arid rangeland of center province of Iran. World Appl Sci J 11(12):1537–1546

    Google Scholar 

  • Anderson G, Hanson J, Haas R (1993) Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sens Environ 45(2):165–175

    Article  Google Scholar 

  • Anderson LO, Shimabukuro YE, Defries RS, Morton D (2005) Assessment of deforestation in near real time over the Brazilian Amazon using multitemporal fraction images derived from Terra MODIS. Geo Remote Sens Lett 2(3):315–318

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete A (1995) A review of vegetation indices. Remote Sens Rev 13(1–2):95–120

    Article  Google Scholar 

  • Beck PSA, Atzberger C, Hogda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100(3):321–334

    Article  Google Scholar 

  • Ben-Ze'ev E, Karnieli A, Agam N, Kaufman Y, Holben B (2006) Assessing vegetation condition in the presence of biomass burning smoke by applying the Aerosol-free Vegetation Index (AFRI) on MODIS images. Int J Remote Sens 27(15):3203–3221

    Article  Google Scholar 

  • Biro K, Pradhan B, Buchroithner M, Makeschin F (2011) Land use/land cover change analysis and its impact on soil properties in the Northern Part of Gadarif Region, Sudan. Land Degrad Dev. doi:10.1002/ldr.1116, Article first published online: 18 Apr 2011 (published online in Wiley Online Library)

  • Biro K, Pradhan B, Suleiman H, Buchroithner MF (2012) Evaluation of TerraSAR-X data for land use/land cover analysis using object-oriented classification approach in the African Sahel area, Sudan. J Indian Soc Remote Sens doi. doi:10.1007/s12524-012-0230-7

  • Chen D, Huang J, Jackson TJ (2005) Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near-and short-wave infrared bands. Remote Sens Environ 98(2):225–236

    Article  Google Scholar 

  • Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37(1):35–46

    Article  Google Scholar 

  • Corresponding KK, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang G, Wang S (2005) Monitoring of forage conditions with MODIS imagery in the Xilingol steppe, Inner Mongolia. Int J Remote Sens 26(7):1423–1436

    Article  Google Scholar 

  • Cottam G, Curtis JT (1956) The use of distance measures in phytosociological sampling. Ecology 37(3):451–460

    Article  Google Scholar 

  • Demers MN (1991) Classification and purpose in automated vegetation maps. Geogr Rev 81(3):267–280

    Article  Google Scholar 

  • Elmore AJ, Mustard JF, Manning SJ, Lobell DB (2000) Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens Environ 73(1):87–102

    Article  Google Scholar 

  • Elvidge CD, Chen Z (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ 54(1):38–48

    Article  Google Scholar 

  • Farzadmehr J, Arzani H, Darvish sefat AA, Jafari M (2004) Investigation in estimating vegetation cover and phytomass production, using enhanced landsat data in a semi arid region. Iranian J Nat Resour 57(2):339–351

    Google Scholar 

  • Feng X, Zhao Y (2011) Grazing intensity monitoring in Northern China steppe: integrating CENTURY model and MODIS data. Ecol Indicators 11(1):175–182

    Article  Google Scholar 

  • Fensholt R, Sandholt I (2003) Derivation of a shortwave infrared water stress index from MODIS near-and shortwave infrared data in a semiarid environment. Remote Sens Environ 87(1):111–121

    Article  Google Scholar 

  • Feoli E, Vuerich LG, Zerihun W (2002) Evaluation of environmental degradation in northern Ethiopia using GIS to integrate vegetation, geomorphological, erosion and socio-economic factors. Agr Ecosyst Environ 91(1–3):313–325

    Article  Google Scholar 

  • Gao Y, Mas JF, Navarrete A (2009) The improvement of an object-oriented classification using multi-temporal MODIS EVI satellite data. Int J Digital Earth 2(3):219–236

    Article  Google Scholar 

  • Gilabert M, González-Piqueras J, Garcia-Haro F, Meliá J (2002) A generalized soil-adjusted vegetation index. Remote Sens Environ 82(2):303–310

    Article  Google Scholar 

  • Grigera G, Oesterheld M, Pacín F (2007) Monitoring forage production for farmers' decision making. Agr Syst 94(3):637–648

    Article  Google Scholar 

  • Heiskanen J, Kivinen S (2008) Assessment of multispectral, -temporal and -angular MODIS data for tree cover mapping in the tundra–taiga transition zone. Remote Sens Environ 112(5):2367–2380

    Article  Google Scholar 

  • Hobbs T (1995) The use of NOAA-AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. Int J Remote Sens 16(7):1289–1302

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1):195–213

    Article  Google Scholar 

  • Huete A, Justice C, Liu H (1994) Development of vegetation and soil indices for MODIS-EOS. Remote Sens Environ 49(3):224–234

    Article  Google Scholar 

  • Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25(3):295–309

    Article  Google Scholar 

  • Jacob F, Petitcolin F, Schmugge T, Vermote E, French A, Ogawa K (2004) Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sens Environ 90(2):137–152

    Article  Google Scholar 

  • Jafari R, Lewis MM, Ostendorf B (2007) Evaluation of vegetation indices for assessing vegetation cover in southern arid lands in South Australia. Rangeland J 29(1):39–49

    Article  Google Scholar 

  • Jensen JR (2007) Remote sensing of the environment: an earth resource perspective. Pearson Prentice Hall, Upper Saddle River, University of Puerto Rico at Mayaguez, Chapter 11: Remote sensing of vegetation

    Google Scholar 

  • Jianlong L, Tiangang L, Quangong C (1998) Estimating grassland yields using remote sensing and GIS technologies in China. New Zeal J Agr Res 41(1):31–38

    Article  Google Scholar 

  • Justice C, Townshend J, Vermote E, Masuoka E, Wolfe R, Saleous N, Roy D, Morisette J (2002) An overview of MODIS land data processing and product status. Remote Sens Environ 83(1–2):3–15

    Article  Google Scholar 

  • Karnieli A, Kaufman YJ, Remer L, Wald A (2001) AFRI-aerosol free vegetation index. Remote Sens Environ 77(1):10–21

    Article  Google Scholar 

  • Kaufman YJ, Tanre D (1992a) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE T Geosci Remote 30(2):261–270

    Article  Google Scholar 

  • Kaufman YJ, Tanre D (1992b) Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. Geoscience and Remote Sensing, IEEE Transactions 30(2):261–270

    Article  Google Scholar 

  • Kaufman YJ, Wald AE, Remer LA, Gao BC, Li RR, Flynn L (1997) The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE T Geosci Remote 35(5):1286–1298

    Article  Google Scholar 

  • Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Watanabe O, Wang S (2003) Quantification of grazing intensities on plant biomass in Xilingol steppe, China using Terra MODIS image. pp 21–22

  • Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang S (2005a) Comparing MODIS vegetation indices with AVHRR NDVI for monitoring the forage quantity and quality in Inner Mongolia grassland, China. Grass Sci 51(1):33–40

    Article  Google Scholar 

  • Kawamura K, Akiyama T, Yokota H, Tsutsumi M, Yasuda T, Watanabe O, Wang S (2005b) Quantifying grazing intensities using geographic information systems and satellite remote sensing in the Xilingol steppe region, Inner Mongolia, China. Agr Ecosyst Environ 107(1):83–93

    Article  Google Scholar 

  • Kelarestaghi A, Jafarian Jeloudar Z (2011) Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab J Geo 4(3):401–411

    Article  Google Scholar 

  • Langley SK, Cheshire HM, Humes KS (2001) A comparison of single date and multitemporal satellite image classifications in a semi-arid grassland. J Arid Environ 49(2):401–411

    Article  Google Scholar 

  • Lloyd D (1990) A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Remote Sens Environ 11(12):2269–2279

    Google Scholar 

  • Lunetta RS, Knight JF, Ediriwickrema J (2005) Land-cover characterization and change detection using multitemporal MODIS NDVI data. IEEE, pp 191–194

  • Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105(2):142–154

    Article  Google Scholar 

  • Makkeasorn A, Chang NB, Li J (2009) Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed. J Environ Manage 90(2):1069–1080

    Article  Google Scholar 

  • McAllister D, Valeo C (2007) A robust new method for the remote estimation of LAI in montane and boreal forests. Int J Remote Sens 28(8):1891–1905

    Article  Google Scholar 

  • McAllister D, Valeo C (2009) Error and quality assessment for remotely sensed estimates of leaf area index. Can J Remote Sens 35(2):141–151

    Article  Google Scholar 

  • Mingwei Z, Qingbo Z, Zhongxin C, Jia L, Yong Z, Chongfa C (2008) Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. Int J Appl Earth Obs Geo 10(4):476–485

    Article  Google Scholar 

  • Mobasheri MR, Shafizadeh Moghadam H, Shayan S (2010) An introduction to MODISI and SCMOD methods for correction of the MODIS snow assessment algorithm. J Indian Soc Remote Sens 38(4):674–685

    Article  Google Scholar 

  • Moleele N, Ringrose S, Arnberg W, Lunden B, Vanderpost C (2001) Assessment of vegetation indexes useful for browse (forage) prediction in semi-arid rangelands. Int J Remote Sens 22(5):741–756

    Article  Google Scholar 

  • Moran EF, Brondizio E, Mausel P, Wu Y (1994) Integrating Amazonian vegetation, land-use, and satellite data. BioScience 44(5):329–338

    Article  Google Scholar 

  • Morisette JT, Privette JL, Justice CO (2002) A framework for the validation of MODIS land products. Remote Sens Environ 83(1–2):77–96

    Article  Google Scholar 

  • O'Neill A (1996) Satellite-derived vegetation indices applied to semi-arid shrub lands in Australia. Aust Geogr 27(2):185–199

    Article  Google Scholar 

  • Perry CR Jr, Lautenschlager LF (1984) Functional equivalence of spectral vegetation indices. Remote Sens Environ 14(1–3):169–182

    Article  Google Scholar 

  • Peters AJ, Walter-Shea EA, Ji L, Vina A, Hayes M, Svoboda MD (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogramm Eng Rem S 68(1):71–75

    Google Scholar 

  • Platnick S, King MD, Ackerman SA, Menzel WP, Baum BA, Riedi JC, Frey RA (2003) The MODIS cloud products: algorithms and examples from Terra. IEEE T Geosci Remote 41(2):459–473

    Article  Google Scholar 

  • Pohl C, Van Genderen J (1998) Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int J Remote Sens 19(5):823–854

    Article  Google Scholar 

  • Purevdorj T, Tateishi R, Ishiyama T, Honda Y (1998) Relationships between percent vegetation cover and vegetation indices. Int J Remote Sens 19(18):3519–3535

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete A, Kerr Y, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48(2):119–126

    Article  Google Scholar 

  • Rahdari, V., Amiri, F., Maleki, N.S., 2010. Vegetation cover change monitoring applying satellite data during 1972 to 2007. J Environ Earth Sci. 2(3): 118-127

    Google Scholar 

  • Reeves MC, Winslow JC, Running SW (2001) Mapping weekly rangeland vegetation productivity using MODIS algorithms. J Range Manage 54(2):207–207

    Google Scholar 

  • Rondeaux G, Steven M, Baret F (1996) Optimization of soil-adjusted vegetation indices. Remote Sens Environ 55(2):95–107

    Article  Google Scholar 

  • Rouse J, Haas R, Schell J, Deering D (1973) Monitoring vegetation systems in the Great Plains with ERTS. NASA SP-351, pp 309–317

  • Roy DP, Borak JS, Devadiga S, Wolfe RE, Zheng M, Descloitres J (2002) The MODIS land product quality assessment approach. Remote Sens Environ 83(1–2):62–76

    Article  Google Scholar 

  • Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H (2005) A crop phenology detection method using time-series MODIS data. Remote Sens Environ 96(3):366–374

    Article  Google Scholar 

  • Salomonson VV, Barnes W, Xiong J, Kempler S, Masuoka E (2002) An overview of the Earth Observing System MODIS instrument and associated data systems performance. In: IEEE Int Geo Remote Sens Symposium, IGARSS 02. 2002., NASA Goddard Space Flight Center, Greenbelt, MD, USA 2002. IEEE, pp 1174–1176, vol. 1172

  • Scharlemann JPW, Benz D, Hay SI, Purse BV, Tatem AJ, Wint GRW, Rogers DJ (2008) Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS One 3(1):e1408

    Article  Google Scholar 

  • Sedano F, Gong P, Ferrao M (2005) Land cover assessment with MODIS imagery in southern African Miombo ecosystems. Remote Sens Environ 98(4):429–441

    Article  Google Scholar 

  • Shi W, Wang M (2009) An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sens Environ 113(8):1587–1597

    Article  Google Scholar 

  • Shin D, Pollard JK, Muller JP (1997) Accurate geometric correction of ATSR images. IEEE T Geo Remote Sens 35(4):997–1006

    Article  Google Scholar 

  • Simone G, Farina A, Morabito F, Serpico SB, Bruzzone L (2002) Image fusion techniques for remote sensing applications. Information Fusion 3(1):3–15

    Article  Google Scholar 

  • Skianis GA, Nikolakopoulos KG (2010) A study of the performance of the Modified Simple Vegetation Index (MSVI), based on probability theory. Ios Press, Washington DC

    Google Scholar 

  • Smith AMS, Wooster MJ (2005) Remote classification of head and backfire types from MODIS fire radiative power and smoke plume observations. Int J Wildland Fire 14(3):249–254

    Article  Google Scholar 

  • Song C, Woodcock CE, Seto KC, Lenney MP, Macomber SA (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244

    Article  Google Scholar 

  • Song X, Liu Z, Zhao Y (2004) Cloud detection and analysis of MODIS image. In: Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International, 20–24 Sept. 2004. IEEE, pp 2764–2767 vol. 2764

  • Tueller P (1991) Remote sensing applications for monitoring rangeland vegetation. Journal of the Grassland Society of Southern Africa 8(4):160–167

    Article  Google Scholar 

  • Unsalan C, Boyer KL (2004) Linearized vegetation indices based on a formal statistical framework. Geoscience and Remote Sensing, IEEE Transactions 42(7):1575–1585

    Article  Google Scholar 

  • Vaiopoulos D, Corresponding GAS, Nikolakopoulos K (2004) The contribution of probability theory in assessing the efficiency of two frequently used vegetation indices. Int J Remote Sens 25(20):4219–4236

    Article  Google Scholar 

  • Van Laake PE, Sanchez-Azofeifa GA (2004) Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products. Remote Sens Environ 91(1):98–113

    Article  Google Scholar 

  • van Leeuwen WJD, Huete AR, Laing TW (1999) MODIS vegetation index compositing approach: a prototype with AVHRR data. Remote Sens Environ 69(3):264–280

    Article  Google Scholar 

  • Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83(1–2):97–111

    Article  Google Scholar 

  • Wang J, Rich P, Price K, Kettle W (2004) Relations between NDVI and tree productivity in the central Great Plains. Int J Remote Sens 25(16):3127–3138

    Article  Google Scholar 

  • Wang M, Shi W (2007) The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt Express 15(24):15722–15733

    Article  Google Scholar 

  • Wang Q, Adiku S, Tenhunen J, Granier A (2005) On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens Environ 94(2):244–255

    Article  Google Scholar 

  • Wang Q, Xiao L, Li J, Mei X (2008) Land cover classification in Qinling Mountains in China, using time-series MODIS NDVI data. IEEE, pp IV-766–IV-769

  • Wang S, Liu S, Wang X, Guo J, Shuai Y, Hu N (2008b) A simple method for information extraction of farm field in Tarim River Basin using MODIS data. Int arch Photogramm Remote Sens Spatial Inform Sci 37:1043–1046

    Google Scholar 

  • Weiss JL, Gutzler DS, Coonrod JEA, Dahm CN (2004) Long-term vegetation monitoring with NDVI in a diverse semi-arid setting, central New Mexico, USA. J Arid Environ 58(2):249–272

    Article  Google Scholar 

  • Wessels K, Prince S, Reshef I (2008) Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production. J Arid Environ 72(10):1940–1949

    Article  Google Scholar 

  • Wessman CA, Bateson CA, Benning TL (1997) Detecting fire and grazing patterns in tallgrass prairie using spectral mixture analysis. Ecol Appl 7(2):493–511

    Article  Google Scholar 

  • Zhan X, Sohlberg R, Townshend J, DiMiceli C, Carroll M, Eastman J, Hansen M, DeFries R (2002) Detection of land cover changes using MODIS 250 m data. Remote Sens Environ 83(1):336–350

    Article  Google Scholar 

  • Zhang H, Lan Y, Lacey R, Hoffmann W, Huang Y (2009) Analysis of vegetation indices derived from aerial multispectral and ground hyperspectral data. Int J Agr Biol Eng 2(3):33–40

    Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Biswajeet Pradhan for providing helpful suggestions to improve an early draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazel Amiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeganeh, H., Khajedein, S.j., Amiri, F. et al. Monitoring rangeland ground cover vegetation using multitemporal MODIS data. Arab J Geosci 7, 287–298 (2014). https://doi.org/10.1007/s12517-012-0733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-012-0733-0

Keywords

Navigation