Skip to main content
Log in

CT vs SPECT: CT is the first-line test for the diagnosis and prognosis of stable coronary artery disease

  • Controversies in Nuclear Cardiology
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Non-invasive cardiac imaging is pivotal in the diagnosis and prognosis of patients with stable CAD. Nuclear SPECT, PET, stress echocardiography and more recently cardiac magnetic resonance imaging have been utilized with excellent diagnostic accuracy. However, along with their inherent individual limitations, most modalities detect ischemia but lack the ability to define coronary anatomy or evaluate for subclinical atherosclerosis. A modality that not only accurately diagnoses obstructive CAD and also facilitates early identification of non-obstructive CAD may be of interest because it may allow for earlier aggressive risk factor modification and primary prevention. Cardiac computerized tomographic angiography (CCTA) has the potential to accurately detect or exclude luminal stenosis, as well as identify and quantify subclinical atherosclerosis in the absence if luminal narrowing. However CCTA, being a relatively a new modality, has less supporting evidence when compared to more mature modalities such as SPECT. Therefore, the question that begs to be addressed is whether CCTA can be utilized as a first line test in establishing the diagnosis and prognosis of CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Mathers CD, Boerma T. Ma Fat D. Global and regional causes of death. Br Med Bull. 2009;92:7-32.

    Article  PubMed  Google Scholar 

  2. Noto TJ Jr, Johnson LW, Krone R, et al. Cardiac catheterization 1990: a report of the Registry of the Society for Cardiac Angiography and Interventions (SCA&I). Cathet Cardiovasc Diagn. 1991;24(2):75-83.

    Article  PubMed  Google Scholar 

  3. Merrill CE EA. Procedures in U.S. hospitals. 2005; www.ahrq.gov/data/hcup/factbk7/factbk7b.htm. Accessed December, 2012.

  4. Patel MR, Peterson ED, Dai D, et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362(10):886-95.

    Article  PubMed  CAS  Google Scholar 

  5. Fleischmann KE, Hunink MG, Kuntz KM, Douglas PS. Exercise echocardiography or exercise SPECT imaging? A meta-analysis of diagnostic test performance. JAMA. 1998;280(10):913-20.

    Article  PubMed  CAS  Google Scholar 

  6. Beller GA, Zaret BL. Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation. 2000;101(12):1465-78.

    Article  PubMed  CAS  Google Scholar 

  7. Lee TH, Boucher CA. Clinical practice. Noninvasive tests in patients with stable coronary artery disease. N Engl J Med. 2001;344(24):1840-5.

    Article  PubMed  CAS  Google Scholar 

  8. Al-Shehri H. Cardiac CT, MR, SPECT, ECHO, and PET: What test, when? www.appliedradiology.com. 2011;40:13-22.

  9. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990 s. Nature. 1993;362(6423):801-9.

    Article  PubMed  CAS  Google Scholar 

  10. Schoenhagen P, Tuzcu EM, Stillman AE, et al. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron Artery Dis. 2003;14(6):459-62.

    Article  PubMed  Google Scholar 

  11. Achenbach S, Moselewski F, Ropers D, et al. Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segment-based comparison with intravascular ultrasound. Circulation. 2004;109(1):14-7.

    Article  PubMed  Google Scholar 

  12. Budoff MJ, Dowe D, Jollis JG, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol. 2008;52(21):1724-32.

    Article  PubMed  Google Scholar 

  13. Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359(22):2324-36.

    Article  PubMed  CAS  Google Scholar 

  14. Hamon M, Biondi-Zoccai GG, Malagutti P, Agostoni P, Morello R, Valgimigli M. Diagnostic performance of multislice spiral computed tomography of coronary arteries as compared with conventional invasive coronary angiography: a meta-analysis. J Am Coll Cardiol. 2006;48(9):1896-910.

    Article  PubMed  Google Scholar 

  15. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology. 2007;244(2):419-28.

    Article  PubMed  Google Scholar 

  16. Meijboom WB, Van Mieghem CA, van Pelt N, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography vs conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol. 2008;52(8):636-43.

    Article  PubMed  Google Scholar 

  17. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol. 2010;56(22):1864-94.

    Article  PubMed  Google Scholar 

  18. Mark DB, Berman DS, Budoff MJ, et al. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation. 2010;121(22):2509-43.

    Article  PubMed  Google Scholar 

  19. Stein PD, Yaekoub AY, Matta F, Sostman HD. 64-slice CT for diagnosis of coronary artery disease: a systematic review. Am J Med. 2008;121(8):715-25.

    Article  PubMed  Google Scholar 

  20. Meijboom WB, Meijs MF, Schuijf JD, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52(25):2135-44.

    Article  PubMed  Google Scholar 

  21. Chow BJ, Freeman MR, Bowen JM, et al. Ontario multidetector computed tomographic coronary angiography study: field evaluation of diagnostic accuracy. Arch Intern Med. 2011;171(11):1021-9.

    Article  PubMed  Google Scholar 

  22. Meijboom WB, Mollet NR, Van Mieghem CA, et al. Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J Am Coll Cardiol. 2006;48(8):1658-65.

    Article  PubMed  Google Scholar 

  23. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996-1002.

    Article  PubMed  CAS  Google Scholar 

  24. Baldasseroni S, Opasich C, Gorini M, et al. Left bundle-branch block is associated with increased 1-year sudden and total mortality rate in 5517 outpatients with congestive heart failure: a report from the Italian network on congestive heart failure. Am Heart J. 2002;143(3):398-405.

    Article  PubMed  Google Scholar 

  25. Andreini D, Pontone G, Pepi M, et al. Diagnostic accuracy of multidetector computed tomography coronary angiography in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2007;49(20):2044-50.

    Article  PubMed  Google Scholar 

  26. Ghostine S, Caussin C, Habis M, et al. Non-invasive diagnosis of ischaemic heart failure using 64-slice computed tomography. Eur Heart J. 2008;29(17):2133-40.

    Article  PubMed  Google Scholar 

  27. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115(10):1296-305.

    PubMed  Google Scholar 

  28. Taylor AJ, Rogan KM, Virmani R. Sudden cardiac death associated with isolated congenital coronary artery anomalies. J Am Coll Cardiol. 1992;20(3):640-7.

    Article  PubMed  CAS  Google Scholar 

  29. Cheitlin MD, De Castro CM, McAllister HA. Sudden death as a complication of anomalous left coronary origin from the anterior sinus of Valsalva, A not-so-minor congenital anomaly. Circulation. 1974;50(4):780-7.

    Article  PubMed  CAS  Google Scholar 

  30. Datta J, White CS, Gilkeson RC, et al. Anomalous coronary arteries in adults: depiction at multi-detector row CT angiography. Radiology. 2005;235(3):812-8.

    Article  PubMed  Google Scholar 

  31. Ropers D, Moshage W, Daniel WG, Jessl J, Gottwik M, Achenbach S. Visualization of coronary artery anomalies and their anatomic course by contrast-enhanced electron beam tomography and three-dimensional reconstruction. Am J Cardiol. 2001;87(2):193-7.

    Article  PubMed  CAS  Google Scholar 

  32. Meyer TS, Martinoff S, Hadamitzky M, et al. Improved noninvasive assessment of coronary artery bypass grafts with 64-slice computed tomographic angiography in an unselected patient population. J Am Coll Cardiol. 2007;49(9):946-50.

    Article  PubMed  Google Scholar 

  33. Ropers D, Pohle FK, Kuettner A, et al. Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation. 2006;114(22):2334-41. quiz 2334.

    Article  PubMed  Google Scholar 

  34. Andreini D, Pontone G, Mushtaq S, Pepi M, Bartorelli AL. Multidetector computed tomography coronary angiography for the assessment of coronary in-stent restenosis. Am J Cardiol. 2010;105(5):645-55.

    Article  PubMed  Google Scholar 

  35. Pugliese F, Weustink AC, Van Mieghem C, et al. Dual source coronary computed tomography angiography for detecting in-stent restenosis. Heart. 2008;94(7):848-54.

    Article  PubMed  CAS  Google Scholar 

  36. Carbone I, Francone M, Algeri E, et al. Non-invasive evaluation of coronary artery stent patency with retrospectively ECG-gated 64-slice CT angiography. Eur Radiol. 2008;18(2):234-43.

    Article  PubMed  Google Scholar 

  37. Oncel D, Oncel G, Tastan A, Tamci B. Evaluation of coronary stent patency and in-stent restenosis with dual-source CT coronary angiography without heart rate control. AJR Am J Roentgenol. 2008;191(1):56-63.

    Article  PubMed  Google Scholar 

  38. Andreini D, Pontone G, Bartorelli AL, et al. Comparison of feasibility and diagnostic accuracy of 64-slice multidetector computed tomographic coronary angiography vs invasive coronary angiography vs intravascular ultrasound for evaluation of in-stent restenosis. Am J Cardiol. 2009;103(10):1349-58.

    Article  PubMed  Google Scholar 

  39. Rixe J, Achenbach S, Ropers D, et al. Assessment of coronary artery stent restenosis by 64-slice multi-detector computed tomography. Eur Heart J. 2006;27(21):2567-72.

    Article  PubMed  Google Scholar 

  40. Sheth T, Dodd JD, Hoffmann U, et al. Coronary stent assessability by 64 slice multi-detector computed tomography. Catheter Cardiovasc Interv. 2007;69(7):933-8.

    Article  PubMed  Google Scholar 

  41. Van Mieghem CA, Cademartiri F, Mollet NR, et al. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound. Circulation. 2006;114(7):645-53.

    Article  PubMed  Google Scholar 

  42. Veselka J, Cadova P, Tomasov P, Theodor A, Zemanek D. Dual-source CT angiography for detection and quantification of in-stent restenosis in the left main coronary artery: comparison with intracoronary ultrasound and coronary angiography. J Invasive Cardiol. 2011;23(11):460-4.

    PubMed  Google Scholar 

  43. Rocha-Filho JA, Blankstein R, Shturman LD, et al. Incremental value of adenosine-induced stress myocardial perfusion imaging with dual-source CT at cardiac CT angiography. Radiology. 2010;254(2):410-9.

    Article  PubMed  Google Scholar 

  44. Chow BJ, Kass M, Gagne O, et al. Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol. 2011;57(11):1280-8.

    Article  PubMed  Google Scholar 

  45. Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol. 2011;58(19):1989-97.

    Article  PubMed  Google Scholar 

  46. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308(12):1237-45.

    Article  PubMed  CAS  Google Scholar 

  47. Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making. Apr-Jun. 1991;11(2):88-94.

    Article  CAS  Google Scholar 

  48. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA. 2004;291(2):210-5.

    Article  PubMed  CAS  Google Scholar 

  49. Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol. 2005;46(5):807-14.

    Article  PubMed  CAS  Google Scholar 

  50. Budoff MJ, Shaw LJ, Liu ST, et al. Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol. 2007;49(18):1860-70.

    Article  PubMed  Google Scholar 

  51. Kondos GT, Hoff JA, Sevrukov A, et al. Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation. 2003;107(20):2571-6.

    Article  PubMed  Google Scholar 

  52. Pletcher MJ, Tice JA, Pignone M, Browner WS. Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med. 2004;164(12):1285-92.

    Article  PubMed  Google Scholar 

  53. Chow BJ, Small G, Yam Y, et al. Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: COroNary computed tomography angiography evaluation for clinical outcomes: an InteRnational Multicenter registry. Circ Cardiovasc Imaging. 2011;4(5):463-72.

    Article  PubMed  Google Scholar 

  54. Chow BJ, Wells GA, Chen L, et al. Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. J Am Coll Cardiol. 2010;55(10):1017-28.

    Article  PubMed  Google Scholar 

  55. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;57(10):1237-47.

    Article  PubMed  Google Scholar 

  56. Andreini D, Pontone G, Mushtaq S, et al. A long-term prognostic value of coronary CT angiography in suspected coronary artery disease. JACC Cardiovasc Imaging. 2012;5(7):690-701.

    Article  PubMed  Google Scholar 

  57. Small GR, Yam Y, Chen L, et al. Prognostic assessment of coronary artery bypass patients with 64-slice computed tomography angiography: anatomical information is incremental to clinical risk prediction. J Am Coll Cardiol. 2011;58(23):2389-95.

    Article  PubMed  Google Scholar 

  58. Chow BJ, Ahmed O, Small G, et al. Prognostic value of CT angiography in coronary bypass patients. JACC Cardiovasc Imaging. 2011;4(5):496-502.

    Article  PubMed  Google Scholar 

  59. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837-47.

    Article  PubMed  CAS  Google Scholar 

  60. Pen AY, Y Chin L. Discordance between Framingham Risk Score and atherosclersois plaque burden. Eur Heart J [Epub ahead of print].

  61. Lessick J, Dragu R, Mutlak D, et al. Is functional improvement after myocardial infarction predicted with myocardial enhancement patterns at multidetector CT? Radiology. 2007;244(3):736-44.

    Article  PubMed  Google Scholar 

  62. Dwivedi G, Dowsley TF, Chow BJ. Assessment of cardiac computed tomography-myocardial perfusion imaging - promise and challenges. Circ J. 2012;76(3):544-52.

    Article  PubMed  Google Scholar 

  63. Shmilovich H, Cheng VY, Tamarappoo BK, et al. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis. 2011;219(2):588-95.

    Article  PubMed  CAS  Google Scholar 

  64. Pundziute G, Schuijf JD, Jukema JW, et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur Heart J. 2008;29(19):2373-81.

    Article  PubMed  Google Scholar 

  65. Min JK, Gilmore A, Budoff MJ, Berman DS, O’Day K. Cost-effectiveness of coronary CT angiography vs myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology. 2010;254(3):801-8.

    Article  PubMed  Google Scholar 

  66. Tandon V, Hall D, Yam Y, et al. Rates of downstream invasive coronary angiography and revascularization: computed tomographic coronary angiography vs. Tc-99 m single photon emission computed tomography. Eur Heart J. 2012;33(6):776-82.

    Article  PubMed  CAS  Google Scholar 

  67. Chow BJ, Abraham A, Wells GA, et al. Diagnostic accuracy and impact of computed tomographic coronary angiography on utilization of invasive coronary angiography. Circ Cardiovasc Imaging. 2009;2(1):16-23.

    Article  PubMed  Google Scholar 

  68. Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. 2009;301(5):500-7.

    Article  PubMed  CAS  Google Scholar 

  69. Hausleiter J, Meyer T, Hadamitzky M, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation. 2006;113(10):1305-10.

    Article  PubMed  Google Scholar 

  70. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290-305.

    Article  PubMed  Google Scholar 

  71. Morin RL, Gerber TC, McCollough CH. Radiation dose in computed tomography of the heart. Circulation. 2003;107(6):917-22.

    Article  PubMed  Google Scholar 

  72. Earls JP, Berman EL, Urban BA, et al. Prospectively gated transverse coronary CT angiography vs retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology. 2008;246(3):742-53.

    Article  PubMed  Google Scholar 

  73. Small GR, Chow BJ, Ruddy TD. Low-dose cardiac imaging: reducing exposure but not accuracy. Expert Rev Cardiovasc Ther. 2012;10(1):89-104.

    Article  PubMed  Google Scholar 

  74. Achenbach S, Marwan M, Ropers D, et al. Coronary computed tomography angiography with a consistent dose below 1 mSv using prospectively electrocardiogram-triggered high-pitch spiral acquisition. Eur Heart J. 2010;31(3):340-6.

    Article  PubMed  Google Scholar 

  75. Achenbach S, Ropers D, Kuettner A, et al. Contrast-enhanced coronary artery visualization by dual-source computed tomography—initial experience. Eur J Radiol. 2006;57(3):331-5.

    Article  PubMed  Google Scholar 

  76. Brodoefel H, Burgstahler C, Tsiflikas I, et al. Dual-source CT: effect of heart rate, heart rate variability, and calcification on image quality and diagnostic accuracy. Radiology. 2008;247(2):346-55.

    Article  PubMed  Google Scholar 

  77. Coles DR, Smail MA, Negus IS, et al. Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol. 2006;47(9):1840-5.

    Article  PubMed  Google Scholar 

  78. Kaufmann PA, Knuuti J. Ionizing radiation risks of cardiac imaging: estimates of the immeasurable. Eur Heart J. 2011;32(3):269-71.

    Article  PubMed  Google Scholar 

  79. Gerber TC, Carr JJ, Arai AE, et al. Ionizing radiation in cardiac imaging: a science advisory from the American Heart Association Committee on Cardiac Imaging of the Council on Clinical Cardiology and Committee on Cardiovascular Imaging and Intervention of the Council on Cardiovascular Radiology and Intervention. Circulation. 2009;119(7):1056-65.

    Article  PubMed  Google Scholar 

  80. Vijayalakshmi K, Kelly D, Chapple CL, et al. Cardiac catheterisation: radiation doses and lifetime risk of malignancy. Heart. 2007;93(3):370-1.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Benjamin Chow receives research support from GE Healthcare and education support from TeraRecon Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. W. Chow MD, FRCPC, FACC, FASNC, FSCCT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aljizeeri, A., Cocker, M.S. & Chow, B.J.W. CT vs SPECT: CT is the first-line test for the diagnosis and prognosis of stable coronary artery disease. J. Nucl. Cardiol. 20, 465–472 (2013). https://doi.org/10.1007/s12350-013-9690-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-013-9690-6

Keywords

Navigation