Skip to main content
Log in

Nomenclature of ISCRl elements capable of mobilizing antibiotic resistance genes present in complex class 1 integrons

  • Note
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

The dissemination of many antibiotic resistance genes has arisen among members of the family Enterobacteriaceae. The dissemination mechanism of these antibiotic resistance genes is closely linked with insertion sequence common region 1 (ISCRl). Thus, caution must be taken in clinical settings to prevent further dissemination of these antibiotic resistance genes. A nomenclature system of ISCRl variants, important for the antibiotic resistance dissemination, was proposed. The proposed system can designate all ISCRl variants on the basis of the detection time and by considering amino-acid substitution(s) compared with ISCRla. This nomenclature system of ISCRl variants can be applied to 19 groups (ISCRl to ISCR19) of the ISCR family and help some researchers to correctly designate new ISCR subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambler, R.P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. London B Biol. Sci. 289, 321–331.

    Article  PubMed  CAS  Google Scholar 

  • Bauernfeind, A., I. Stemplinger, R. Jungwirth, R. Wilhelm, and Y. Chong. 1996. Comparative characterization of the cephamycinase bla CMY-1 gene and its relationship with other β-lactamase genes. Antimicrob. Agents Chemother. 40, 1926–1930.

    PubMed  CAS  Google Scholar 

  • Bennett, P.M. 2008. Plasmid encoded antibiotic resistance: Acquisition and transfer of antibiotic resistance genes in bacteria. Br. J. Pharmacol. 153, S347–357.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.T., T.L. Lauderdale, T.L. Liao, Y.R. Shiau, H.Y. Shu, K.M. Wu, J.J. Yan, I.J. Su, and S.F. Tsai. 2007. Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 β-lactamases in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 51, 3004–3007.

    Article  PubMed  CAS  Google Scholar 

  • Doi, Y., N. Shibata, K. Shibayama, K. Kamachi, H. Kurokawa, K. Yokoyama, T. Yagi, and Y. Arakawa. 2002. Characterization of a novel plasmid-mediated cephalosporinase (CMY-9) and its genetic environment in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 46, 2427–2434.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, J.Y., H.J. Yoon, E.S. Kim, Y. Lee, S.H. Choi, N.J. Kim, J.H. Woo, and Y.S. Kim. 2005. Detection of qnr in clinical isolates of Escherichia coli from Korea. Antimicrob. Agents Chemother. 49, 2522–2524.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.H., S.H. Jeong, and S.S. Cha. 2006. Screening for carbapenem-resistant Gram-negative bacteria. Lancet Infect. Dis. 6, 682–684.

    Article  PubMed  Google Scholar 

  • Lee, J.H., S.H. Jeong, S.S. Cha, and S.H. Lee. 2009. New disturbing trend in antimicrobial resistance of Gram-negative pathogens. PLoS Pathog. 5, e1000221.

    Google Scholar 

  • Lee, S.H., S.H. Jeong, and Y.M. Park. 2003. Characterization of bla CMY-10, a novel, plasmid-encoded AmpC-type β-lactamase gene in a clinical isolate of Enterobacter aerogenes. J. Appl. Microbiol. 95, 744–752.

    Article  PubMed  CAS  Google Scholar 

  • Sorum, H., T.M. L’Abee-Lund, A. Solberg, and A. Wold. 2003. Integron-containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida. Antimicrob. Agents Chemother. 47, 1285–1290.

    Article  PubMed  CAS  Google Scholar 

  • Stokes, H.W., C. Tomaras, Y. Parsons, and R.M. Hall. 1993. The partial 3′-conserved segment duplications in the integrons In6 from pSa and In7 from pDGO100 have a common origin. Plasmid 30, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  • Toleman, M.A., P.M. Bennett, and T.R. Walsh. 2006a. Common regions e.g. orf513 and antibiotic resistance: IS91-like elements evolving complex class 1 integrons. J. Antimicrob. Chemother. 58, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Toleman, M.A., P.M. Bennett, and T.R. Walsh. 2006b. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70, 296–316.

    Article  PubMed  CAS  Google Scholar 

  • Toleman, M.A. and T.R. Walsh. 2008. Evolution of the ISCR3 group of ISCR elements. Antimicrob. Agents Chemother. 52, 3789–3791.

    Article  PubMed  CAS  Google Scholar 

  • Verdet, C., G. Arlet, G. Barnaud, P.H. Lagrange, and A. Philippon. 2000. A novel integron in Salmonella enterica serovar Enteritidis, carrying the bla DHA-1 gene and its regulator gene ampR, originated from Morganella morganii. Antimicrob. Agents Chemother. 44, 222–225.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, T.R. 2006. Combinatorial genetic evolution of multiresistance. Curr. Opin. Microbiol. 9, 476–482.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hee Lee.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, S.G., Lee, J.J., Song, J.S. et al. Nomenclature of ISCRl elements capable of mobilizing antibiotic resistance genes present in complex class 1 integrons. J Microbiol. 47, 514–516 (2009). https://doi.org/10.1007/s12275-009-0054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-009-0054-5

Keywords

Navigation