Skip to main content
Log in

Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Self-powered ZnO/perovskite heterostructured ultraviolet (UV) photodetectors (PDs) based on the pyro-phototronic effect have been recently reported as a promising solution for energy-efficient, ultrafast-response, and high-performance UV PDs. In this study, the temperature dependence of the pyro-phototronic effect on the photo-sensing performance of self-powered ZnO/perovskite heterostructured PDs was investigated. The current responses of these PDs to UV light were enhanced by 174.1% at 77 K and 28.7% at 300 K owing to the improved pyro-phototronic effect at low temperatures. The fundamentals of the pyro-phototronic effect were thoroughly studied by analyzing the chargetransfer process and the time constant of the current response of the PDs upon UV illumination. This work presents in-depth understandings about the pyrophototronic effect on the ZnO/perovskite heterostructure and provides guidance for the design and development of corresponding optoelectronics for ultrafast photo sensing, optothermal detection, and biocompatible optoelectronic probes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

    Article  Google Scholar 

  2. Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

    Article  Google Scholar 

  3. Wu, W. Z.; Wen, X. N.; Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013, 340, 952–957.

    Article  Google Scholar 

  4. Ju, S.; Lee, K.; Janes, D. B.; Yoon, M.-H.; Facchetti, A.; Marks, T. J. Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. Nano Lett. 2005, 5, 2281–2286.

    Article  Google Scholar 

  5. Wu, W. Z.; Wei, Y. G.; Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 2010, 22, 4711–4715.

    Article  Google Scholar 

  6. Yu, R. M.; Wu, W. Z.; Pan, C. F.; Wang, Z. N.; Ding, Y.; Wang, Z. L. Piezo-phototronic boolean logic and computation using photon and strain dual-gated nanowire transistors. Adv. Mater. 2015, 27, 940–947.

    Article  Google Scholar 

  7. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

    Article  Google Scholar 

  8. Pan, C. F.; Dong, L.; Zhu, G.; Niu, S. M.; Yu, R. M.; Yang, Q.; Liu, Y.; Wang, Z. L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758.

    Article  Google Scholar 

  9. Kim, D. C.; Jung, B. O.; Kwon, Y. H.; Cho, H. K. Highly sensible ZnO nanowire ultraviolet photodetectors based on mechanical schottky contact. J. Electrochem. Soc. 2012, 159, K10–K14.

    Article  Google Scholar 

  10. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UVphotodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009.

    Article  Google Scholar 

  11. Wang, Z. N.; Yu, R. M.; Wen, X. N.; Liu, Y.; Pan, C. F.; Wu, W. Z.; Wang, Z. L. Optimizing performance of siliconbased p–n junction photodetectors by the piezo-phototronic effect. ACS Nano 2014, 8, 12866–12873.

    Article  Google Scholar 

  12. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

    Article  Google Scholar 

  13. Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649–1653.

    Article  Google Scholar 

  14. Dai, J.; Xu, C. X.; Xu, X. Y.; Guo, J. Y.; Li, J. T.; Zhu, G. Y.; Lin, Y. Single ZnO microrod ultraviolet photodetector with high photocurrent gain. ACS Appl. Mater. Interfaces 2013, 5, 9344–9348.

    Article  Google Scholar 

  15. Ryu, Y. R.; Lee, T. S.; Lubguban, J. A.; White, H. W.; Park, Y. S.; Youn, C. J. ZnO devices: Photodiodes and p-type field-effect transistors. Appl. Phys. Lett. 2005, 87, 153504.

    Article  Google Scholar 

  16. Peng, W. B.; He, Y. N.; Wen, C. B.; Ma, K. Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer. Sens. Actuat. A: Phys. 2012, 184, 34–40.

    Article  Google Scholar 

  17. Peng, W. B.; He, Y. N.; Zhao, X. L.; Liu, H.; Kang, X.; Wen, C. B. Study on the performance of ZnO nanomaterialbased surface acoustic wave ultraviolet detectors. J. Micromech. Microeng. 2013, 23, 125008.

    Article  Google Scholar 

  18. Ahn, S. E.; Lee, J. S.; Kim, H.; Kim, S.; Kang, B. H.; Kim, K. H.; Kim, G. T. Photoresponse of sol–gel-synthesized ZnO nanorods. Appl. Phys. Lett. 2004, 84, 5022–5024.

    Article  Google Scholar 

  19. Keem, K.; Kim, H.; Kim, G. T.; Lee, J. S.; Min, B.; Cho, K.; Sung, M. Y.; Kim, S. Photocurrent in ZnO nanowires grown from Au electrodes. Appl. Phys. Lett. 2004, 84, 4376–4378.

    Article  Google Scholar 

  20. Jeong, M. C.; Oh, B. Y.; Lee, W.; Myoung, J. M. Optoelectronic properties of three-dimensional ZnO hybrid structure. Appl. Phys. Lett. 2005, 86, 103105.

    Article  Google Scholar 

  21. Hu, Y. F.; Zhou, J.; Yeh, P. H.; Li, Z.; Wei, T. Y.; Wang, Z. L. Supersensitive, fast-response nanowire sensors by using schottky contacts. Adv. Mater. 2010, 22, 3327–3332.

    Article  Google Scholar 

  22. Cheng, G.; Wu, X. H.; Liu, B.; Li, B.; Zhang, X. T.; Du, Z. L. ZnO nanowire schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed. Appl. Phys. Lett. 2011, 99, 203105.

    Article  Google Scholar 

  23. Wang, Z. N.; Yu, R. M.; Pan, C. F.; Li, Z. L.; Yang, J.; Yi, F.; Wang, Z. L. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 2015, 6, 8401.

    Article  Google Scholar 

  24. Heiland, G.; Ibach, H. Pyroelectricity of zinc oxide. Solid State Commun. 1966, 4, 353–356.

    Article  Google Scholar 

  25. Hsiao, C. C.; Yu, S. Y. Improved response of ZnO films for pyroelectric devices. Sensors 2012, 12, 17007–17022.

    Article  Google Scholar 

  26. Hsiao, C. C.; Huang, S. W.; Chang, R. C. Temperature field analysis for ZnO thin-film pyroelectric devices with partially covered electrode. Sens. Mater. 2012, 24, 421–441.

    Google Scholar 

  27. Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New Jersey, 2007.

    Google Scholar 

  28. Lubomirsky, I.; Stafsudd, O. Invited review article: Practical guide for pyroelectric measurements. Rev. Sci. Instrum. 2012, 83, 051101.

    Article  Google Scholar 

  29. Alvarez-Quintana, J.; Martínez, E.; Pérez-Tijerina, E.; Pérez-García, S. A.; Rodríguez-Viejo, J. Temperature dependent thermal conductivity of polycrystalline ZnO films. J. Appl. Phys. 2010, 107, 063713.

    Article  Google Scholar 

  30. Zhao, Y.; Yan, Y. K.; Kumar, A.; Wang, H.; Porter, W. D.; Priya, S. Thermal conductivity of self-assembled nanostructured ZnO bulk ceramics. J. Appl. Phys. 2012, 112, 034313.

    Article  Google Scholar 

  31. Im, J. H.; Lee, C. R.; Lee, J. W.; Park, S. W.; Park, N. G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Lin Wang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Yu, R., Wang, X. et al. Temperature dependence of pyro-phototronic effect on self-powered ZnO/perovskite heterostructured photodetectors. Nano Res. 9, 3695–3704 (2016). https://doi.org/10.1007/s12274-016-1240-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1240-5

Keywords

Navigation