Skip to main content
Log in

Solvent switching and purification of colloidal nanoparticles through water/oil Interfaces within a density gradient

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Traditional post-treatment of colloidal nanoparticles (NPs) usually involves repeated centrifugation-wash-sonication processes to separate NPs from the original synthetic environment; however, such separation processes have either high energy cost or low efficiency and tend to cause aggregation. Here we show a general and scalable colloid post-processing technique based on density gradient centrifugation through water/oil interfaces. Such a one-step technique can switch the solvent in a colloid at almost any concentration without aggregation, and meanwhile purify colloidal nanoparticles by separating them from by-products and environmental impurities. Droplet sedimentation was shown to be the mechanism of this one-step concentration/purification process, and mathematical modeling was established to quantify the accumulation and sedimentation velocities of different NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yin, Y.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

    Article  Google Scholar 

  2. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

    Article  Google Scholar 

  3. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-Controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.

    Article  Google Scholar 

  4. Wang, D.; Xin, H. L.; Hovden, R.; Wang, H.; Yu, Y.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

    Article  Google Scholar 

  5. Zhou, Z. Y.; Tian, N.; Li, J. T.; Broadwell, I.; Sun, S. G. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem. Soc. Rev. 2011, 40, 4167–4185.

    Article  Google Scholar 

  6. Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

    Article  Google Scholar 

  7. Norris, D. J.; Efros, A. L.; Erwin, S. C. Doped nanocrystals. Science 2008, 319, 1776–1779.

    Article  Google Scholar 

  8. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 2002, 295, 2425–2427.

    Article  Google Scholar 

  9. Liu, N.; Lu, Z.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

    Article  Google Scholar 

  10. Zrazhevskiy, P.; Gao, X. H. Quantum dot imaging platform for single-cell molecular profiling. Nat. Commun. 2013, 4, 1619.

    Article  Google Scholar 

  11. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. 25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

    Article  Google Scholar 

  12. Doane, T. L.; Burda, C. The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chem. Soc. Rev. 2012, 41, 2885–2911.

    Article  Google Scholar 

  13. Ma, W.; Kuang, H.; Xu, L.; Ding, L.; Xu, C.; Wang, L.; Kotov, N. A. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 2013, 4, 2689.

    Google Scholar 

  14. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

    Article  Google Scholar 

  15. Wang, Y.; Chen, G.; Yang, M.; Silber, G.; Xing, S.; Tan, L. H.; Wang, F.; Feng, Y.; Liu, X.; Li, S. et al. A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat. Commun. 2010, 1, 87.

    Google Scholar 

  16. Wang, X.; Li, G.; Chen, T.; Yang, M.; Zhang, Z.; Wu, T.; Chen, H. Polymer-encapsulated gold-nanoparticle dimers: Facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett. 2008, 8, 2643–2647.

    Article  Google Scholar 

  17. Skrdla, P. J. Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease. Langmuir 2012, 28, 4842–4857.

    Article  Google Scholar 

  18. Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

    Article  Google Scholar 

  19. Mastronardi, M. L.; Henderson, E. J.; Puzzo, D. P.; Ozin, G. A. Small silicon, big opportunities: The development and future of colloidally-stable monodisperse silicon nanocrystals. Adv. Mater. 2012, 24, 5890–5898.

    Article  Google Scholar 

  20. Bai, L.; Ma, X.; Liu, J.; Sun, X.; Zhao, D.; Evans, D. G. Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 2010, 132, 2333–2337.

    Article  Google Scholar 

  21. Li, S.; Chang, Z.; Liu, J.; Bai, L.; Luo, L.; Sun, X. Separation of gold nanorods using density gradient ultracentrifugation. Nano Res. 2011, 4, 723–728.

    Article  Google Scholar 

  22. Sun, X.; Tabakman, S. M.; Seo, W. S.; Zhang, L.; Zhang, G.; Sherlock, S.; Bai, L.; Dai, H. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 939–942.

    Article  Google Scholar 

  23. Chen, G.; Wang, Y.; Tan, L. H.; Yang, M.; Tan, L. S.; Chen, Y.; Chen, H. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 2009, 131, 4218–4219.

    Article  Google Scholar 

  24. Xu, J.; Wang, H.; Liu, C.; Yang, Y.; Chen, T.; Wang, Y.; Wang, F.; Liu, X.; Xing, B.; Chen, H. Mechanical nanosprings: Induced coiling and uncoiling of ultrathin Au nanowires. J. Am. Chem. Soc. 2010, 132, 11920–11922.

    Article  Google Scholar 

  25. Brakke, M. K.; Daly, J. M. Density-gradient centrifugation: Non-ideal sedimentation and the interaction of major and minor components. Science 1965, 148, 387–389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, Y., Song, S., Liu, X. et al. Solvent switching and purification of colloidal nanoparticles through water/oil Interfaces within a density gradient. Nano Res. 7, 1670–1679 (2014). https://doi.org/10.1007/s12274-014-0527-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0527-7

Keywords

Navigation