Skip to main content
Log in

Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Graphene growth on the same metal substrate with different crystal morphologies, such as single crystalline and polycrystalline, may involve different mechanisms. We deal with this issue by preparing graphene on single crystal Ni(111) and on ∼300 nm thick Ni films on SiO2 using an ambient pressure chemical vapor deposition (APCVD) method, and analyze the different growth behaviors for different growth parameters by atomically-resolved scanning tunneling microscopy (STM) and complementary macroscopic analysis methods. Interestingly, we obtained monolayer graphene on Ni(111), and multilayer graphene on Ni films under the same growth conditions. Based on the experimental results, it is proposed that the graphene growth on Ni(111) is strongly templated by the Ni(111) lattice due to the strong Ni-C interactions, leading to monolayer graphene growth. Multilayer graphene flakes formed on polycrystalline Ni films are usually stacked with deviations from the Bernal stacking type and show small rotations among the carbon layers. Considering the different substrate features, the inevitable grain boundaries on polycrystalline Ni films are considered to serve as the growth fronts for bilayer and even multilayer graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao, L.; Guest, J. R.; Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.

    Article  CAS  Google Scholar 

  2. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  3. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  Google Scholar 

  4. Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

    Article  CAS  Google Scholar 

  5. Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.

    Article  Google Scholar 

  6. Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

    Article  CAS  Google Scholar 

  7. Lopez, G. A.; Mittemeijer, E. The solubility of C in solid Cu. Scr. Mater. 2004, 51, 1–5.

    Article  CAS  Google Scholar 

  8. Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011, 21, 3324–3334.

    Article  CAS  Google Scholar 

  9. Lander, J. J.; Kern, H. E.; Beach, A. L. Solubility and diffusion coefficient of carbon in nickel-Reaction rates of nickel-carbon alloys with barium oxide. J. Appl. Phys. 1952, 23, 1305–1309.

    Article  CAS  Google Scholar 

  10. Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F.; Liu, Z. F. Universal segregation growth approach to wafer-size graphene from non-Noble metals. Nano Lett. 2011, 11, 297–303.

    Article  CAS  Google Scholar 

  11. Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C. A.; Badmaev, A.; Zhou, C. W. Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J. Phys. Chem. Lett. 2010, 1, 3101–3107.

    Article  CAS  Google Scholar 

  12. De Arco, L. G.; Zhang, Y.; Kumar, A.; Zhou, C. W.; Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotech. 2009, 8, 135–138.

    Article  Google Scholar 

  13. Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surf. Sci. 1974, 43, 493–520.

    Article  CAS  Google Scholar 

  14. Eizenberg, M.; Blakely, J. M. Carbon monolayer phase condensation on Ni (111). Surf. Sci. 1979, 82, 228–236.

    Article  CAS  Google Scholar 

  15. Backer, R.; Horz, G. Scanning tunneling microscopic investigations of the adsorption and segregation of carbon and sulfur on nickel single crystal surfaces. Anal. Chem. 1995, 353, 757–761.

    Article  Google Scholar 

  16. Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 1997, 374, 61–64.

    Article  CAS  Google Scholar 

  17. Gao, M.; Pan, Y.; Zhang, C. D.; Hu, H.; Yang, R.; Lu, H. L.; Cai, J. M.; Du, S. X.; Liu, F.; Gao, H. J. Tunable interfacial properties of epitaxial graphene on metal substrates. Appl. Phys. Lett. 2010, 96, 053109.

    Article  Google Scholar 

  18. Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

    Article  CAS  Google Scholar 

  19. Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Res. 2011, 4, 712–721.

    Article  CAS  Google Scholar 

  20. Zhang, Y. F.; Gao, T.; Gao, Y. B.; Xie, S. B.; Ji, Q. Q.; Yan, K.; Peng, H. L.; Liu, Z. F. Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano 2011, 5, 4014–4022.

    Article  CAS  Google Scholar 

  21. Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.

    Article  Google Scholar 

  22. Chae, S. J.; Gunes, F.; Kim, K. K.; Kim, E. S.; Han, G. H.; Kim, S. M.; Shin, H. J.; Yoon, S. M.; Choi, J. Y.; Park, M. H., et al. Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation. Adv. Mater. 2009, 21, 2328–2333.

    Article  CAS  Google Scholar 

  23. Nix, F. C.; MacNair, D. The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Phys. Rev. 1941, 60, 597–605.

    Article  CAS  Google Scholar 

  24. Kelly, B. T. The thermal expansion coefficient of graphite parallel to the basal planes. Carbon 1972, 10, 429–433.

    Article  CAS  Google Scholar 

  25. Varykhalov, A.; Sanchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

    Article  CAS  Google Scholar 

  26. Jiang, J. W.; Wang, J. S.; Li, B. W. Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach. Phys. Rev. B 2009, 80, 205429.

    Article  Google Scholar 

  27. Dedkov, Y. S.; Fonin, M. Electronic and magnetic properties of the graphene-ferromagnet interface. New J. Phys. 2010, 12, 125004.

    Article  CAS  Google Scholar 

  28. Varchon, F.; Mallet, P.; Magaud, L.; Veuillen, J. Y. Rotational disorder in few-layer graphene films on 6H-SiC(000-1): A scanning tunneling microscopy study. Phys. Rev. B 2008, 77, 165415.

    Article  Google Scholar 

  29. Huang, H.; Wong, S. L.; Tin, C. C.; Luo, Z. Q.; Shen, Z. X.; Chen, W.; Wee, A. T. S. Epitaxial growth and characterization of graphene on free-standing polycrystalline 3C-SiC. J. Appl. Phys. 2011, 110, 014308.

    Article  Google Scholar 

  30. Pong, W. T.; Durkan, C. A. Review and outlook for an anomaly of scanning tunneling microscopy (STM): Superlattices on graphite. J. Phys. D: Appl. Phys. 2005, 38, R329–355.

    Google Scholar 

  31. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Zhang or Zhongfan Liu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Gao, T., Xie, S. et al. Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study. Nano Res. 5, 402–411 (2012). https://doi.org/10.1007/s12274-012-0221-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0221-6

Keywords

Navigation