Skip to main content
Log in

Catalyst-free growth of nanographene films on various substrates

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have developed a new method to grow uniform graphene films directly on various substrates, such as insulators, semiconductors, and even metals, without using any catalyst. The growth was carried out using a remote plasma enhancement chemical vapor deposition (r-PECVD) system at relatively low temperatures, enabling the deposition of graphene films up to 4-inch wafer scale. Scanning tunneling microscopy (STM) confirmed that the films are made up of nanocrystalline graphene particles of tens of nanometers in lateral size. The growth mechanism for the nanographene is analogous to that for diamond grown by PECVD methods, in spite of sp2 carbon atoms being formed in the case of graphene rather than sp3 carbon atoms as in diamond. This growth approach is simple, low-cost, and scalable, and might have potential applications in fields such as thin film resistors, gas sensors, electrode materials, and transparent conductive films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  2. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

    Article  CAS  Google Scholar 

  3. Pisana, S.; Lazzeri, M.; Casiraghi, C.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Mauri, F. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat. Mater. 2007, 6, 198–201.

    Article  CAS  Google Scholar 

  4. Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 2007, 3, 36–40.

    Article  CAS  Google Scholar 

  5. Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

    Article  Google Scholar 

  6. Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

    Article  CAS  Google Scholar 

  7. Gilje, S.; Han, S.; Wang, M. S.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano. Lett. 2007, 7, 3394–3398.

    Article  CAS  Google Scholar 

  8. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhr, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Thomas, S. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.

    Article  CAS  Google Scholar 

  9. Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

    Article  CAS  Google Scholar 

  10. Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H-SiC (0001). Phys. Rev. Lett. 2008, 101, 156801.

    Article  Google Scholar 

  11. Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

    Article  CAS  Google Scholar 

  12. Marchini, S.; Gunther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru (0001). Phys. Rev. B 2007, 76, 075429.

    Article  Google Scholar 

  13. Dedkov, Y. S.; Fonin, M.; Ruediger, U.; Laubschat, C. Rashba effect in the graphene/Ni(111) ststem. Phys. Rev. Lett. 2008, 100, 107602.

    Article  Google Scholar 

  14. N’Diaye, A. T.; Bleikamp, S.; Feibelman, P. J.; Michely, T. Two-dimensional Ir cluster lattice on a graphene moiré in Ir(111). Phys. Rev. Lett. 2006, 97, 215501.

    Article  Google Scholar 

  15. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  CAS  Google Scholar 

  16. Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  CAS  Google Scholar 

  17. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.

    Article  Google Scholar 

  18. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R. D.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  19. Alfonso, R.; Son, H.; Jiao, L. Y.; Fan, B.; Dresselhaus, M. S.; Liu, Z. F.; Kong, J. Transferring and identification of single- and few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.

    Article  Google Scholar 

  20. Ismach, A.; Druzgalski, C.; Penwell, S.; Schwartzberg, A.; Zheng, M.; Javey, A.; Bokor, J.; Zhang, Y. G. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 2010, 10, 1542–1548.

    Article  CAS  Google Scholar 

  21. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Röhr, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207.

    Article  CAS  Google Scholar 

  22. Nikitin, A.; Näslund, L. A.; Zhang, Z.; Nilsson, A. C-H bond formation at the graphite surface studied with core level spectroscopy. Surface Science 2008, 602, 2575–2580.

    Article  CAS  Google Scholar 

  23. Mikami, T.; Nakazawa, H.; Kudo, M.; Mashita, M. Effect of hydrogen on film properties of diamond-like carbon films prepared by reactive radio-frequency magnetron sputtering using hydrogen gas. Thin Solid Films 2005, 488, 87–92.

    Article  CAS  Google Scholar 

  24. Mérel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J. Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 1998, 136, 105–110.

    Article  Google Scholar 

  25. May, P. W.; Harvey, J. N.; Smith, J. A.; Mankelevich, Y. A. Re-evaluation of the mechanism of ultrananocrystalline diamond deposition from Ar/CH4/H2 gas mixtures. J. Appl. Phys. 2006, 99, 104907.

    Article  Google Scholar 

  26. Mankelevich, Y. A.; May, P. W. New insights into the mechanism of CVD diamond growth: Singlecrystal diamond in MWPECVD reactors. Diamond Relat. Mater. 2008, 17, 1021–1028.

    Article  CAS  Google Scholar 

  27. Lee, S. T.; Lin, Z.; Jiang, X. CVD diamond films: Nucleation and growth. Mater. Sci. Eng., R 1999, 25, 123–154.

    Article  Google Scholar 

  28. Cheianov, V. V.; Fal’ko, V. I. Friedel oscillations, impurity scattering, and temperature dependence of resistivity in graphene. Phys. Rev. Lett. 2006, 97, 226801.

    Article  Google Scholar 

  29. Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandin, A. A. High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 2008, 92, 202108.

    Article  Google Scholar 

  30. Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W. Y.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562–566.

    Article  CAS  Google Scholar 

  31. Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

    Article  CAS  Google Scholar 

  32. Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Shi, Z., Wang, Y. et al. Catalyst-free growth of nanographene films on various substrates. Nano Res. 4, 315–321 (2011). https://doi.org/10.1007/s12274-010-0086-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0086-5

Keywords

Navigation