Skip to main content

Advertisement

Log in

Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Cognitive disorders such as schizophrenia and Alzheimer’s disease are associated with dysfunction of the highly evolved dorsolateral prefrontal cortex (dlPFC), and with changes in glutamatergic N-methyl-D-aspartate receptors (NMDARs). Recent research on the primate dlPFC discovered that the pyramidal cell circuits that generate the persistent firing underlying spatial working memory communicate through synapses on spines containing NMDARs with NR2B subunits (GluN2B) in the post-synaptic density. This contrasts with synapses in the hippocampus and primary visual cortex, where GluN2B receptors are both synaptic and extrasynaptic. Blockade of GluN2B in the dlPFC markedly reduces the persistent firing of the Delay cells needed for neuronal representations of visual space. Cholinergic stimulation of nicotinic α7 receptors within the glutamate synapse is necessary for NMDAR actions. In contrast, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors have only subtle effects on the persistent firing of Delay cells, but contribute substantially to the firing of Cue and Response cells. Systemic administration of the NMDAR antagonist ketamine reduces the persistent firing of Delay cells, but increases the firing of some Response cells. The reduction in persistent firing produced by ketamine may explain why this drug can mimic or worsen the cognitive symptoms of schizophrenia. Similar actions in the medial PFC circuits representing the emotional aspects of pain may contribute to the rapid analgesic and anti-depressant actions of ketamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev 1999, 51: 7–61.

    CAS  PubMed  Google Scholar 

  2. Erreger K, Dravid SM, Banke TG, Wyllie DJ, Traynelis SF. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 2005, 563: 345–358.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kristiansen LV, Bakir B, Haroutunian V, Meador-Woodruff JH. Expression of the NR2B-NMDA receptor trafficking complex in prefrontal cortex from a group of elderly patients with schizophrenia. Schizophr Res 2010, 119: 198–209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kurup P, Zhang Y, Xu J, Venkitaramani DV, Haroutunian V, Greengard P, et al. Abeta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J Neurosci 2010, 30: 5948–5957.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Preuss T. Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J Cognit Neurosci 1995, 7: 1–26.

    Article  CAS  Google Scholar 

  6. Goldman-Rakic PS. Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 1994, 6: 348–357.

    Article  CAS  PubMed  Google Scholar 

  7. Lim HK, Juh R, Pae CU, Lee BT, Yoo SS, Ryu SH, et al. Altered verbal working memory process in patients with Alzheimer’s disease: an fMRI investigation. Neuropsychobiology 2008, 57: 181–187.

    Article  PubMed  Google Scholar 

  8. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 2004, 304: 1021–1024.

    Article  CAS  PubMed  Google Scholar 

  9. Cho KK, Khibnik L, Philpot BD, Bear MF. The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex. Proc Natl Acad Sci U S A 2009, 106: 5377–5382.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Lüscher C, Malenka RC. NMDA receptor-dependent longterm potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol 2012, 4:pii: a005710.

    PubMed Central  PubMed  Google Scholar 

  11. Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 2001, 24: 1071–1089.

    Article  CAS  PubMed  Google Scholar 

  12. Tashiro A, Yuste R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 2004, 26: 429–440.

    Article  CAS  PubMed  Google Scholar 

  13. Araya R, Jiang J, Eisenthal KB, Yuste R. The spine neck filters membrane potentials. Proc Natl Acad Sci U S A 2006, 103: 17961–17966.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Goebel-Goody SM, Davies KD, Alvestad Linger RM, Freund RK, Browning MD. Phospho-regulation of synaptic and extrasynaptic N-methyl-d-aspartate receptors in adult hippocampal slices. Neuroscience 2009, 158: 1446–1459.

    Article  CAS  PubMed  Google Scholar 

  15. Baez MV, Oberholzer MV, Cercato MC, Snitcofsky M, Aguirre AI, Jerusalinsky DA. NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction. PLoS One 2013, 8: e55244.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Shipton OA, Paulsen O. GluN2A and GluN2B subunit-containing NMDA receptors in hippocampal plasticity. Philos Trans R Soc Lond B Biol Sci 2013, 369: 20130163.

    Article  PubMed  Google Scholar 

  17. Dupuis JP, Ladépêche L, Seth H, Bard L, Varela J, Mikasova L, et al. Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses. EMBO J 2014, 33: 842–861.

    Article  CAS  PubMed  Google Scholar 

  18. Liu XB, Murray KD, Jones EG. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci 2004, 24: 8885–8895.

    Article  CAS  PubMed  Google Scholar 

  19. Philpot BD, Weisberg MP, Ramos MS, Sawtell NB, Tang YP, Tsien JZ, et al. Effect of transgenic overexpression of NR2B on NMDA receptor function and synaptic plasticity in visual cortex. Neuropharmacology 2001, 41: 762–770.

    Article  CAS  PubMed  Google Scholar 

  20. Goldman PS, Rosvold HE. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol 1970, 27: 291–304.

    Article  CAS  PubMed  Google Scholar 

  21. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J. Neurophysiology 1989, 61: 331–349.

    CAS  Google Scholar 

  22. Goldman-Rakic PS. The “psychic cell” of Ramón y Cajal. Prog Brain Res 2002, 136: 427–434.

    Article  PubMed  Google Scholar 

  23. Goldman-Rakic PS. Cellular basis of working memory. Neuron 1995, 14: 477–485.

    Article  CAS  PubMed  Google Scholar 

  24. Wang XJ. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 1999, 19: 9587–9603.

    CAS  PubMed  Google Scholar 

  25. Wang XJ. Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosci 2001, 24: 455–463.

    Article  CAS  Google Scholar 

  26. Wang H, Stradtman GGr, Wang XJ, Gao WJ. A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex. Proc Natl Acad Sci U S A 2008, 105: 16791–16796.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wang MJ, Yang Y, Wang CJ, Gamo NJ, Jin LE, Mazer JA, et al. NMDA receptors subserve working memory persistent neuronal firing In dorsolateral prefrontal cortex. Neuron 2013, 77: 736–749.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AFT, Wang M. Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Nat Acad Sci USA 2013, 110: 12078–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Arnsten AFT, Wang MJ, Paspalas CD. Neuromodulation of thought: Flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron 2012, 76: 223–239.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Snyder EM, Nong Y, Almeida CG, Paul S, Moran TH, Choi EY, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 2005, 8: 1051–1058.

    Article  CAS  PubMed  Google Scholar 

  31. Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci 2010, 47: 4–16.

    PubMed  Google Scholar 

  32. Banerjee A, Macdonald ML, Borgmann-Winter KE, Hahn CG. Neuregulin 1-erbB4 pathway in schizophrenia: From genes to an interactome. Brain Res Bull 2010, 30: 132–139.

    Article  Google Scholar 

  33. Martin LF, Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol 2007, 78: 225–246.

    Article  CAS  PubMed  Google Scholar 

  34. Kristiansen LV, Patel SA, Haroutunian VH, Meador-Woodruff JH. Expression of the NR2B-NMDA receptor subunit and its Tbr-1/CINAP regulatory proteins in postmortem brain suggest altered receptor processing in schizophrenia. Synapse 2010, 64: 495–502.

    Article  CAS  PubMed  Google Scholar 

  35. Weickert CS, Fung SJ, Catts VS, Schofield PR, Allen KM, Moore LT, et al. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol Psychiatry 2013, 18: 1185–1192.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511: 421–427.

    Article  PubMed Central  Google Scholar 

  37. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 2014, 506: 179–184.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Driesen NR, McCarthy G, Bhagwagar Z, Bloch MH, Calhoun VD, D’Souza DC, et al. The impact of NMDA receptor blockade on human working memory-related prefrontal function and connectivity. Neuropsychopharmacology 2013, 38: 2613–2622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Anticevic A, Gancsos M, Murray JD, Repovs G, Driesen NR, Ennis DJ, et al. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci U S A 2012, 109: 16720–16725.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Driesen NR, Leung HC, Calhoun VD, Constable RT, Gueorguieva R, Hoffman R, et al. Impairment of working memory maintenance and response in schizophrenia: functional magnetic resonance imaging evidence. Biol Psychiatry 2008, 64: 1026–1034.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Jackson ME, Homayoun H, Moghaddam B. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 2004, 101: 8467–8472.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Malhotra AK, Pinals DA, Adler CM, Elman I, Clifton A, Pickar D, et al. Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology 1997, 17: 141–150.

    Article  CAS  PubMed  Google Scholar 

  43. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000, 47: 351–354.

    Article  CAS  PubMed  Google Scholar 

  44. Zarate CAJ, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-Daspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006, 63: 856–864.

    Article  CAS  PubMed  Google Scholar 

  45. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 2013, 170: 1134–1142.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, et al. Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 2013, 74: 250–256.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Clark P. Treatment-refractory depression: A case of successful treatment with intranasal ketamine 10%. Ann Clin Psychiatry 2014, 26: 145.

    PubMed  Google Scholar 

  48. Lapidus KA, Levitch CF, Perez AM, Brallier JW, Parides MK, Soleimani L, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry 2014, 76: 970–976..

    Article  CAS  PubMed  Google Scholar 

  49. Salvadore G, Cornwell BR, Colon-Rosario V, Coppola R, Grillon C, Zarate CAJ, et al. Increased anterior cingulate cortical activity in response to fearful faces: a neurophysiological biomarker that predicts rapid antidepressant response to ketamine. Biol Psychiatry 2009, 65: 289–295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Seo H, Lee D. Behavioral and neural changes after gains and losses of conditioned reinforcers. J Neurosci 2009, 29: 3627–3641.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Rushworth MF, Behrens TE. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat Neurosci 2008, 4: 389–397.

    Article  Google Scholar 

  52. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005, 45: 651–660.

    Article  CAS  PubMed  Google Scholar 

  53. Li N, Lee BT, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010, 329: 959–964.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Andolfatto G, Willman E, Joo D, Miller PL, Wong WB, Koehn M, et al. Intranasal ketamine for analgesia in the emergency department: a prospective observational series. Acad Emerg Med 2013, 20: 1050–1054.

    Article  PubMed  Google Scholar 

  55. Vogt BA, Sikes RW. The medial pain system, cingulate cortex, and parallel processing of nociceptive information. Prog Brain Res 2000, 22: 223–235.

    Google Scholar 

  56. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 2013, 14: 502–511.

    Article  CAS  PubMed  Google Scholar 

  57. Yeaman F, Meek R, Egerton-Warburton D, Rosengarten P, Graudins A. Sub-dissociative-dose intranasal ketamine for moderate to severe pain in adult emergency department patients. Emerg Med Australas 2014, 26: 237–242.

    Article  PubMed  Google Scholar 

  58. McCarty EC, Mencio GA, Walker LA, Green NE. Ketamine sedation for the reduction of children’s fractures in the emergency department. J Bone Joint Surg Am 2000, 82-A: 912–918.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Arnsten, A.F.T. Contribution of NMDA receptors to dorsolateral prefrontal cortical networks in primates. Neurosci. Bull. 31, 191–197 (2015). https://doi.org/10.1007/s12264-014-1504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1504-6

Keywords

Navigation