Skip to main content

Advertisement

Log in

Time-dependent effect of combination therapy with erythropoietin and granulocyte colony-stimulating factor in a mouse model of hypoxic-ischemic brain injury

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Erythropoietin (EPO) and granulocyte colonystimulating factor (G-CSF) are likely to play broad roles in the brain. We investigated the effects of combination therapy with EPO and G-CSF in hypoxicischemic brain injury during the acute, subacute, and chronic phases. A total of 79 C57BL/6 mice with hypoxic-ischemic brain injury were randomly assigned acute (days 1–5), subacute (days 11–15) and chronic (days 28–32) groups. All of them were treated with G-CSF (250 μg/kg) and EPO (5 000 U/kg) or saline daily for 5 consecutive days. Behavioral assessments and immunohistochemistry for angiogenesis, neurogenesis, and astrogliosis were performed with an 8-week follow-up. Hypoxia-inducible factor-1 (HIF-1) was also measured by Western blot analysis. The results showed that the combination therapy with EPO and G-CSF in the acute phase significantly improved rotarod performance and forelimb-use symmetry compared to the other groups, while subacute EPO and G-CSF therapy exhibited a modest improvement compared with the chronic saline controls. The acute treatment significantly increased the density of CD31+ (PECAM-1) and α-smooth muscle actin+ vessels in the frontal cortex and striatum, increased BrdU+/PSANCAM+ neurogenesis in the subventricular zone, and decreased astroglial density in the striatum. Furthermore, acute treatment significantly increased the HIF-1 expression in the cytosol and nucleus, whereas chronic treatment did not change the HIF-1 expression, consistent with the behavioral outcomes. These results indicate that the induction of HIF-1 expression by combination therapy with EPO and G-CSF synergistically enhances not only behavioral function but also neurogenesis and angiogenesis while decreasing the astroglial response in a timedependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hasselblatt M, Jeibmann A, Riesmeier B, Maintz D, Schabitz WR. Granulocyte-colony stimulating factor (G-CSF) and G-CSF receptor expression in human ischemic stroke. Acta Neuropathol 2007, 113: 45–51.

    Article  CAS  PubMed  Google Scholar 

  2. Schlager GW, Griesmaier E, Wegleiter K, Neubauer V, Urbanek M, Kiechl-Kohlendorfer U, et al. Systemic G-CSF treatment does not improve long-term outcomes after neonatal hypoxic-ischaemic brain injury. Exp Neurol 2011, 230: 67–74.

    Article  CAS  PubMed  Google Scholar 

  3. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002, 8: 963–970.

    Article  CAS  PubMed  Google Scholar 

  4. Sprigg N, Bath PMB. Colony stimulating factors (blood growth factors) are promising but unproven for treating stroke. Stroke 2007, 38: 1997–1998.

    Article  Google Scholar 

  5. Digicaylioglu M. Erythropoietin in stroke: quo vadis. Expert Opin Biol 2010, 10: 937–949.

    Article  CAS  Google Scholar 

  6. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 2001, 98: 4044–4049.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 2004, 305: 239–242.

    Article  CAS  PubMed  Google Scholar 

  8. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats Stroke 2004, 35: 1732–1737.

    Article  CAS  PubMed  Google Scholar 

  9. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2004, 8: 495–505.

    Google Scholar 

  10. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, et al; EPO Stroke Trial Group. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 2009, 40: e647–656.

    Article  CAS  PubMed  Google Scholar 

  11. Burgess AW, Metcalf D. Characterization of a serum factor stimulating the differentiation of myelomonocytic leukemic cells. Int J Cancer 1980, 26: 647–654.

    Article  CAS  PubMed  Google Scholar 

  12. Sachs L. The molecular control of blood cell development. Science 1987, 238: 1374–1379.

    Article  CAS  PubMed  Google Scholar 

  13. Cavallaro AM, Lilleby K, Majolino I, Storb R, Appelbaum FR, Rowley SD, et al. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant 2000, 25: 85–89.

    Article  CAS  PubMed  Google Scholar 

  14. Toth ZE, Leker RR, Shahar T, Pastorino S, Szalayova I, Asemenew B, et al. The combination of granulocyte colonystimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia. Blood 2008, 111: 5544–5552.

    Article  CAS  PubMed  Google Scholar 

  15. Beck H, Voswinckel R, Wagner S, Ziegelhoeffer T, Heil M, Helisch A, et al. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J Cereb Blood Flow Metab 2003, 23: 709–717.

    Article  PubMed  Google Scholar 

  16. Six I, Gasan G, Mura E, Bordet R. Beneficial effect of pharmacological mobilization of bone marrow in experimental cerebral ischemia. Eur J Pharmacol 2003, 458: 327–328.

    Article  CAS  PubMed  Google Scholar 

  17. Schneider A, Wysocki R, Pitzer C, Kruger C, Laage R, Schwab S, et al. An extended window of opportunity for G-CSF treatment in cerebral ischemia. BMC Biol 2006, 4: 36.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 1998, 253: 26–32.

    Article  CAS  PubMed  Google Scholar 

  19. Liu SP, Lee SD, Lee HT, Liu DD, Wang HJ, Liu RS, et al. Granulocyte colony-stimulating factor activating HIF-1alpha acts synergistically with erythropoietin to promote tissue plasticity. PLoS One 2010, 5: e10093.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Levesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002, 30: 440–449.

    Article  CAS  PubMed  Google Scholar 

  21. Levesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001, 98: 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  22. Ke Q, Costa M. Hypoxia-Inducible Factor-1 (HIF-1). Mol Pharmacol 2006, 70: 1469–1480.

    Article  CAS  PubMed  Google Scholar 

  23. Pierelli L, Perillo A, Greggi S, Salerno G, Panici PB, Menichella G, et al. Erythropoietin addition to granulocyte colony-stimulating factor abrogates life-threatening neutropenia and increases peripheral-blood progenitorcell mobilization after epirubicin, paclitaxel, and cisplatin combination chemotherapy: results of a randomized comparison. J Clin Oncol 1999, 17: 1288.

    CAS  PubMed  Google Scholar 

  24. Olivieri A, Offidani M, Cantori I, Ciniero L, Ombrosi L, Masia MC, et al. Addition of erythropoietin to granulocyte colonystimulating factor after priming chemotherapy enhances hemopoietic progenitor mobilization. Bone Marrow Transplant 1995, 16: 765–770.

    CAS  PubMed  Google Scholar 

  25. Pierelli L, Menichella G, Scambia G, Teofili L, Iovino S, Serafini R, et al. In vitro and In vitro effects of recombinant human erythropoietin plus recombinant human G-CSF on human haemopoietic progenitor cells. Bone Marrow Transplant 1994, 14: 23–30.

    CAS  PubMed  Google Scholar 

  26. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 2000, 97: 10526–10531.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cheer SM, Wagstaff AJ. Epoetin Beta: a review of its clinical use in the treatment of anaemia in patients with cancer. Drugs 2004, 64: 323–346.

    Article  CAS  PubMed  Google Scholar 

  28. Im SH, Yu JH, Park ES, Lee JE, Kim HO, Park KI, et al. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxicischemic brain injury. Neuroscience 2010, 169: 259–268.

    Article  CAS  PubMed  Google Scholar 

  29. MacLellan CL, Auriat AM, McGie SC, Yan R, Huynh HD, De Butte MF, et al. Gauging recovery after hemorrhagic stroke in rats: implications for cytoprotection studies. J Cereb Blood Flow Metab 2006, 26: 1031–1042.

    Article  PubMed  Google Scholar 

  30. Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 1999, 93: 2627–2636.

    CAS  PubMed  Google Scholar 

  31. Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, et al. Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 2005, 1058: 120–128.

    Article  CAS  PubMed  Google Scholar 

  32. Sugiyama Y, Yagita Y, Oyama N, Terasaki Y, Omura-Matsuoka E, Sasaki T, et al. Granulocyte colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model of ischemic stroke. Stroke 2011, 42: 770–775.

    Article  CAS  PubMed  Google Scholar 

  33. Zaidi AU, Bessert DA, Ong JE, Xu H, Barks JD, Silverstein FS, et al. New oligodendrocytes are generated after neonatal hypoxicischemic brain injury in rodents. Glia 2004, 46: 380–390.

    Article  PubMed  Google Scholar 

  34. Gonzalez FF, McQuillen P, Mu D, Chang Y, Wendland M, Vexler Z, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci 2007, 29: 321–330.

    Article  CAS  PubMed  Google Scholar 

  35. Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005, 50: 427–434.

    Article  PubMed  Google Scholar 

  36. Askalan R, Deveber G, Ho M, Ma J, Hawkins C. Astrocyticinducible nitric oxide synthase in the ischemic developing human brain. Pediatr Res 2006, 60: 687–692.

    Article  CAS  PubMed  Google Scholar 

  37. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scarforming, reactive astrocytes in adult transgenic mice. Neuron 1999, 23: 297–308.

    Article  CAS  PubMed  Google Scholar 

  38. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004, 5: 146–156.

    Article  CAS  PubMed  Google Scholar 

  39. Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist 2005, 11: 400–407.

    Article  CAS  PubMed  Google Scholar 

  40. Vangeison G, Rempe DA. The Janus-faced effects of hypoxia on astrocyte function. Neuroscientist 2009, 15: 597–588.

    Article  Google Scholar 

  41. Desclaux M, Teigell M, Amar L, Vogel R, Gimenez YRM, Privat A, et al. A novel and efficient gene transfer strategy reduces glial reactivity and improves neuronal survival and axonal growth in vitro. PLoS One 2009, 4: e6227.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Jelkmann W, Effects of erythropoietin on brain function. Curr Pharm Biotechnol 2005, 6: 65–79.

    CAS  PubMed  Google Scholar 

  43. Chen ZY, Warin R, Noguchi CT. Erythropoietin and normal brain development: receptor expression determines multitissue response. Neurodegener Dis 2006, 3: 68–75.

    Article  CAS  PubMed  Google Scholar 

  44. Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, et al. The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol 2003, 62: 228–236

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Rae Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J.H., Seo, J.H., Lee, J.E. et al. Time-dependent effect of combination therapy with erythropoietin and granulocyte colony-stimulating factor in a mouse model of hypoxic-ischemic brain injury. Neurosci. Bull. 30, 107–117 (2014). https://doi.org/10.1007/s12264-013-1397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1397-9

Keywords

Navigation