Skip to main content
Log in

Stepwise and combinatorial optimization of enantioselectivity for the asymmetric hydrolysis of 1-(3’,4’-methylenedioxyphenyl)ethyl acetate under use of a cold-adapted Bacillus amyloliquefaciens esterase

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Optically pure 1-(3’,4’-methylenedioxyphenyl) ethanol is a key chiral intermediate for the synthesis of Steganacin and Salmeterol. A para-nitrobenzyl esterase cloned from Bacillus amyloliquefaciens (BAE) was employed to hydrolyze 1-(3’,4’-methylenedioxyphenyl) ethyl ester for the production of (R)-1-(3’,4’-methylenedioxyphenyl)ethanol. Initially, a moderate enantioselectivity (E = 35) only was obtained at 30°C. Some reaction conditions such as reaction temperature and additive approach were investigated in order to improve the enantioselectivity of the BAEcatalyzed reaction.. As a result, the enantioselectivity was improved significantly to 140 under addition of Tween-80 and a decreasing reaction temperature to 0°C. The result was confirmed in a decagram-scale preparative bioresolution also. The optimized enzymatic hydrolysis conditions provide a more effective process for the (R)-1-(3’,4’-methylenedioxyphenyl) ethanol bioproduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Joncour, A., A. Décor, J. M. Liu, M. E. Tran Huu Dau, and O. Baudoin (2007) Asymmetric synthesis of antimicrotubule biaryl hybrids of allocolchicine and steganacin. Chem. Eur. J. 13: 5450–5465.

    Article  CAS  Google Scholar 

  2. Johnson, M. (1995) Salmeterol. Med. Res. Rev. 15: 225–257.

    Article  CAS  Google Scholar 

  3. Hashiguchi, S., A. Fujii, K. J. Haack, K. Matsumura, T. Ikariya, and R. Noyori (1997) Kinetic resolution of racemic secondary alcohols by RuII-catalyzed hydrogen transfer. Angew. Chem. Int. Ed. 36: 288–290.

    Article  CAS  Google Scholar 

  4. Wettergren, J., A. Bøgevig, M. Portier, and H. Adolfsson (2006) Ruthenium-catalyzed enantioselective reduction of electron-rich aryl alkyl ketones. Adv. Synth. Catal. 348: 1277–1282.

    Article  CAS  Google Scholar 

  5. Wang, M. C., Q. J. Zhang, W. X. Zhao, X. D. Wang, X. Ding, T. T. Jing, and M. P. Song (2008) Evaluation of enantiopure N-(ferrocenylmethyl) azetidin-2-yl (diphenyl) methanol for catalytic asymmetric addition of organozinc reagents to aldehydes. J. Org. Chem. 73: 168–176.

    Article  CAS  Google Scholar 

  6. Wang, M. C., Q. J. Zhang, G. W. Li, and Z. K. Liu (2009) Highly enantioselective addition of dimethylzinc to arylaldehydes catalyzed by (2S)-1-ferrocenyl-methylaziridin-2-yl (diphenyl) methanol. Tetrahedron: Asymmetry 20: 288–292.

    Article  CAS  Google Scholar 

  7. Koul, S., J. L. Koul, B. Singh, M. Kapoor, R. Parshad, K. S. Manhas, S. C. Taneja, and G. N. Qazi (2005) Trichosporon beigelli esterase (TBE): A versatile esterase for the resolution of economically important racemates. Tetrahedron: Asymmetry 16: 2575–2591.

    Article  CAS  Google Scholar 

  8. Zock, J., C. Cantwell, J. Swartling, R. Hodges, T. Pohl, K. Sutton, P. Rostek, Jr., D. McGilvray, and S. Queener (1994) The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase: Cloning, sequence and high-level expression in Escherichia coli. Gene 151: 37–43.

    Article  CAS  Google Scholar 

  9. Arnold, F. H. and J. C. Moore (1998) Para-nitrobenzyl esterases with enhanced activity in aqueous and nonaqueous media. US Patent 5,741, 691.

    Google Scholar 

  10. Arnold, F. H. and L. J. Giver (1999) Thermally stable paranitrobenzyl esterases. US Patent 5,945, 325.

    Google Scholar 

  11. Henke, E. and U. T. Bornscheuer (2002) Esterases from Bacillus subtilis and B. stearothermophilus share high sequence homology but differ substantially in their properties. Appl. Microbiol. Biotechnol. 60: 320–326.

    Article  CAS  Google Scholar 

  12. Heinze, B., R. Kourist, L. Fransson, K. Hult, and U. T. Bornscheuer (2007) Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis. Protein Eng. Des. Sel. 20: 125–131.

    Article  CAS  Google Scholar 

  13. Kourist, R., S. Bartsch, and U. T. Bornscheuer (2007) Highly enantioselective synthesis of arylaliphatic tertiary alcohols using mutants of an esterase from Bacillus subtilis. Adv. Synth. Catal. 349: 1393–1398.

    Article  CAS  Google Scholar 

  14. Barbayianni, E., C. G. Kokotos, S. Bartsch, C. Drakou, U. T. Bornscheuer, and G. Kokotos (2009) Bacillus subtilis esterase (BS2) and its double mutant have different selectivity in the removal of carboxyl protecting groups. Adv. Synth. Catal. 351: 2325–2332.

    Article  CAS  Google Scholar 

  15. Wiggers, M., J. Holt, R. Kourist, S. Bartsch, I. Arends, A. J. Minnaard, U. T. Bornscheuer, and U. Hanefeld (2009) Probing the enantioselectivity of Bacillus subtilis esterase BS2 for tert. alcohols. J. Mol. Catal. B: Enzymatic 60: 82–86.

    Article  CAS  Google Scholar 

  16. Zheng, G. W., H. L. Yu, J. D. Zhang, and J. H. Xu (2009) Enzymatic production of l-menthol by a high substrate concentration tolerable esterase from newly isolated Bacillus subtilis ECU0554. Adv. Synth. Catal. 351: 405–414.

    Article  CAS  Google Scholar 

  17. Liu, J. Y., G. W. Zheng, C. X. Li, H. L. Yu, J. Pan, and J. H. Xu (2013) Multi-substrate fingerprinting of esterolytic enzymes with a group of acetylated alcohols and statistic analysis of substrate spectrum. J. Mol. Catal. B: Enzymatic 89: 41–47.

    Article  CAS  Google Scholar 

  18. Zhao, L. L., J. H. Xu, J. Zhao, J. Pan, and Z. L. Wang (2008) Biochemical properties and potential applications of an organic solvent- tolerant lipase isolated from Serratia marcescens ECU1010. Proc. Biochem. 43: 626–633.

    Article  CAS  Google Scholar 

  19. Ottosson, J. and K. Hult (2001) Influence of acyl chain length on the enantioselectivity of Candida antarctica lipase B and its thermodynamic components in kinetic resolution of sec-alcohols. J. Mol. Catal. B: Enzymatic 11: 1025–1028.

    Article  CAS  Google Scholar 

  20. Qian, L., J. Y. Liu, J. Y. Liu, H. L. Yu, C. X. Li, and J. H. Xu (2011) Fingerprint lipolytic enzymes with chromogenic p-nitrophenyl esters of structurally diverse carboxylic acids. J. Mol. Catal. B: Enzymatic 73: 22–26.

    CAS  Google Scholar 

  21. Mozaffar, Z., J. Weete, and R. Dute (1994) Influence of surfactants on an extracellular lipase from Pythium ultimum. J. Am. Oil Chem. Soc. 71: 75–79.

    Article  CAS  Google Scholar 

  22. Liu, Y. Y., J. H. Xu, and Y. Hu (2000) Enhancing effect of Tween-80 on lipase performance in enantioselective hydrolysis of ketoprofen ester. J. Mol. Catal. B: Enzymatic 10: 523–529.

    Article  CAS  Google Scholar 

  23. Sakai, T., T. Kishimoto, Y. Tanaka, T. Ema, and M. Utaka (1998) Low-temperature method for enhancement of enantioselectivity in the lipase-catalyzed kinetic resolutions of solketal and some chiral alcohols. Tetrahedron Lett. 39: 7881–7884.

    Article  CAS  Google Scholar 

  24. Jin, X., B. Liu, Z. Ni, Q. Wu, and X. Lin (2011) A novel control of enzymatic enantioselectivity through the racemic temperature influenced by reaction media. Enz. Microb. Technol. 48: 454–457.

    Article  CAS  Google Scholar 

  25. Phillips, R. S. (1996) Temperature modulation of the stereochemistry of enzymatic catalysis: Prospects for exploitation. Trends Biotechnol. 14: 13–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gao-Wei Zheng or Jian-He Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JY., Zheng, GW., Imanaka, T. et al. Stepwise and combinatorial optimization of enantioselectivity for the asymmetric hydrolysis of 1-(3’,4’-methylenedioxyphenyl)ethyl acetate under use of a cold-adapted Bacillus amyloliquefaciens esterase. Biotechnol Bioproc E 19, 442–448 (2014). https://doi.org/10.1007/s12257-013-0559-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0559-y

Keywords

Navigation