Skip to main content
Log in

Plasmid dimerization increases the production of hepatitis B core particles in E. coli

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Due to their icosahedral structure with a high density of B- and T-cell epitopes, hepatitis B virus (HBV) core (HBc) particles are used as components of novel anti-HBV vaccines. Previous experiments demonstrated that C-terminally truncated HBV core (HBcΔ) proteins, which lack the polyarginine domain, were produced more efficiently in E. coli compared with full-length HBc. We have established a tryptophan operon promoter-directed high-level production system of 145 amino acid HBcΔ (HBc145); however, the level of HBc145 synthesis varied among individual subclones. Further investigation revealed that the subclones exhibiting higher HBc145 synthesis also demonstrated plasmid dimerization, leading to HBc145 yields that were 60 ∼ 65% (mg/g) or 25 ∼ 30% (mg/L) higher compared to clones containing a monomeric plasmid. These data were confirmed in at least three independent expression and purification events. Although plasmid dimerization is generally considered to inhibit plasmid stability in a growing cell population, it was found to have a positive effect on HBc145 synthesis and production in both Trp-deficient and Trp-rich media. This finding should be considered when planning large-scale production of HBc145.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, A. L., M. J. Francis, G. Z. Hastings, N. R. Parry, P. V. Barnett, D. J. Rowlands, and B. E. Clarke (1991) Foreign epitopes in immunodominant regions of hepatitis B core particles are highly immunogenic and conformationally restricted. Vaccine 9: 595–601.

    Article  CAS  Google Scholar 

  2. Schödel, F., A. M. Moriarty, D. L. Peterson, J. A. Zheng, J. L. Hughes, H. Will, D. J. Leturcq, J. S. McGee, and D. R. Milich (1992) The position of heterologous epitopes inserted in hepatitis B virus core particles determines their immunogenicity. J. Virol. 66: 106–114.

    Google Scholar 

  3. Borisova, G., B. Arya, A. Dislers, O. Borschukova, V. Tsibinogin, D. Skrastina, M. A. Eldarov, P. Pumpens, K. G. Skryabin, and E. Grens (1993) Hybrid hepatitis B virus nucleocapsid bearing an immunodominant region from hepatitis B virus surface antigen. J. Virol. 67: 3696–3701.

    CAS  Google Scholar 

  4. Koletzki, D., S. S. Biel, H. Meisel, E. Nugel, H. R. Gelderblom, D. H. Krüger, and R. Ulrich (1999) HBV core particles allow the insertion and surface exposure of the entire potentially protective region of Puumala hantavirus nucleocapsid protein. Biol. Chem. 380: 325–333.

    Article  CAS  Google Scholar 

  5. Pumpens, P., R. Ulrich, K. Sasnauskas, A. Kazaks, V. Ose, and E. Grens (2009) Construction of novel vaccines on the basis of the virus-like particles: Hepatitis B virus proteins as vaccine carriers. pp. 205–248. In: Y. Khudyakov (ed.). Medicinal Protein Engineering. CRC Press, Taylor & Francis Group, Boca Raton London, NY, USA.

    Google Scholar 

  6. Whitacre, D. C., B. O. Lee, and D. R. Milich (2009) Use of hepadnavirus core proteins as vaccine platforms. Expert. Rev. Vac. 8: 1565–1573.

    Article  CAS  Google Scholar 

  7. Oliveira, G. A., K. Wetzel, J. M. Calvo-Calle, R. Nussenzweig, A. Schmidt, A. Birkett, F. Dubovsky, E. Tierney, C. H. Gleiter, G. Boehmer, A. J. Luty, M. Ramharter, G. B. Thornton, P. G. Kremsner, and E. H. Nardin (2005) Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant montanide ISA 720 in phase I trial. Infect. Immun. 73: 3587–3597.

    Article  CAS  Google Scholar 

  8. De Filette, M., W. M. Jou, A. Birkett, K. Lyons, B. Schultz, A. Tonkyro, S. Resch, and W. Fiers (2005) Universal influenza A vaccine: Optimization of M2-based constructs. Virol. 337: 149–161.

    Article  Google Scholar 

  9. Nassal, M., C. Skamel, M. Vogel, P. A. Kratz, T. Stehle, R. Wallich, and M. M. Simon (2008) Development of hepatitis B virus capsids into a whole-chain protein antigen display platform: New particulate lyme disease vaccines. Int. J. Med. Microbiol. 298: 135–142.

    Article  CAS  Google Scholar 

  10. Borisova, G. P., I. V. Kalis, P. M. Pushko, V. V. Tsibinogin, V. I. Loseva, V. P. Ose, E. I. Stankevich, A. I. Dreimane, D. I. Sniker, E. E. Grinstein, P. P. Pumpen, and E. J. Gren (1988) Genetically engineered mutants of the core antigen of the human hepatitis B virus preserving the ability for native self-assembly. Dokl. Akad. Nauk SSSR 298: 1474–1478.

    CAS  Google Scholar 

  11. Gallina, A., F. Bonelli, L. Zentilin, G. Rindi, M. Muttini, and G. Milanesi (1989) A recombinant hepatitis B core antigen polypeptide with the protamine-like domain deleted self-assembles into capsid particles but fails to bind nucleic acids. J. Virol. 63: 4645–4652.

    CAS  Google Scholar 

  12. Wingfield, P. T., S. J. Stahl, R. W. Williams, and A. C. Steven (1995) Hepatitis core antigen produced in Escherichia coli: Subunit composition, conformational analysis, and in vitro capsid assembly. Biochem. 34: 4919–4932.

    Article  CAS  Google Scholar 

  13. Cooper, A. and Y. Shaul (2005) Recombinant viral capsids as an efficient vehicle of oligonucleotide delivery into cells. Biochem. Biophys. Res. Commun. 327: 1094–1099.

    Article  CAS  Google Scholar 

  14. Crowther, R. A., N. A. Kiselev, B. Böttcher, J. A. Berriman, G. P. Borisova, V. Ose, and P. Pumpens (1994) Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 77: 943–950.

    Article  CAS  Google Scholar 

  15. Wynne, S. A., R. A. Crowther, and A. G. W. Leslie (1999) The crystal structure of the human hepatitis B virus capsid. Mol. Cell 3: 771–780.

    Article  CAS  Google Scholar 

  16. Leonhartsberg, S. (2006) E. coli expression system efficiently secretes recombinant proteins into culture broth. BioProc. Internat. 4: 64–66.

    Google Scholar 

  17. Schmidt, F. R. (2004) Recombinant expression systems in the pharmaceutical industry. Appl. Microbiol. Biotechnol. 65: 363–372.

    Article  CAS  Google Scholar 

  18. Bass, S. H. and D. G. Yansura (2000) Application of the E. coli trp promoter. Mol. Biotechnol. 16: 253–260.

    Article  CAS  Google Scholar 

  19. Borisova, G. P., I. Berzins, P. M. Pushko, P. Pumpen, E. J. Gren, V. V. Tsibinogin, V. Loseva, V. Ose, R. Ulrich, H. Siakkou, and H. A. Rosenthal (1989) Recombinant core particles of hepatitis B virus exposing foreign antigenic determinants on their surface. FEBS Lett. 259: 121–124.

    Article  CAS  Google Scholar 

  20. Borisova, G., O. Borschukova, D. Skrastina, A. Dislers, V. Ose, P. Pumpens, and E. Grens (1999) Behavior of a short preS1 epitope on the surface of hepatitis B core particles. Biol. Chem. 380: 315–324.

    Article  CAS  Google Scholar 

  21. Kazaks, A., G. Borisova, S. Cvetkova, L. Kovalevska, V. Ose, I. Sominskaya, P. Pumpens, D. Skrastina, and A. Dislers (2004) Mosaic hepatitis B core particles presenting complete preS sequence of viral envelope on their surface. J. Gen. Virol. 85: 2665–2670.

    Article  CAS  Google Scholar 

  22. Dislers, A., I. Sominska, A. Kazaks, I. Petrovskis, and I. Zarina (2008) Expression system for producing recombinant virus-like particles. Patent LV 13587 (B)IPC1-7: A61K39/29; C12N15/71.

    Google Scholar 

  23. Kazaks, A., R. Balmaks, T. Voronkova, V. Ose, and P. Pumpens (2008) Melanoma vaccine candidates from chimeric hepatitis B core virus-like particles carrying a tumor-associated MAGE-3 epitope. Biotechnol. J. 3: 1429–1436.

    Article  CAS  Google Scholar 

  24. Smith, G. (1988) Homologous recombination in prokaryotes. Microbiol. Rev. 52: 1–28.

    CAS  Google Scholar 

  25. Summers, D. K. and D. J. Sherratt (1984) Multimerization of high copy number plasmids causes instability: CoIE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36: 1097–1103.

    Article  CAS  Google Scholar 

  26. Summers, D. K., C. W. H. Beton, and H. L. Withers (1993) Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol. Microbiol. 8: 1031–1038.

    Article  CAS  Google Scholar 

  27. Field, C. M. and D. K. Summers (2011) Multicopy plasmid stability: Revisiting the dimer catastrophe. J. Theor. Biol. 291: 119–127.

    Article  CAS  Google Scholar 

  28. Mazin, A. V., T. V. Timchenko, M. K. Saparbaev, and O. M. Mazina (1996) Dimerization of plasmid DNA accelerates selection for antibiotic resistance. Mol. Microbiol. 20: 101–108.

    Article  CAS  Google Scholar 

  29. Pumpen, P. P., A. V. Dishler, T. M. Kozlovskaia, V. V. Bychko, E. I. Gren, M. B. Rivkina, A. P. Grinberg, and R. A. Kukaine (1981) Cloning of hepatitis B virus DNA in Escherichia coli. Dokl. Akad. Nauk. SSSR 260: 1022–1024.

    CAS  Google Scholar 

  30. Bichko, V., P. Pushko, D. Dreilina, P. Pumpen, and E. Gren (1985) Subtype ayw variant of hepatitis B virus. DNA primary structure analysis. FEBS Lett. 185: 208–212.

    Article  CAS  Google Scholar 

  31. Soberon, X., L. Covarrubias, and F. Bolivar (1980) Construction and characterization of new cloning vehicles, IV. Deletion derivatives of pBR322 and pBR325. Gene 9: 287–305.

    Article  CAS  Google Scholar 

  32. Pushko, P., M. Sallberg, G. Borisova, U. Ruden, V. Bichko, B. Wahren, P. Pumpens, and L. Magnius (1994) Identification of hepatitis B virus core protein regions exposed or internalized at the surface of HBcAg particles by scanning with monoclonal antibodies. Virol. 202: 912–920.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andris Kazaks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berza, I., Dishlers, A., Petrovskis, I. et al. Plasmid dimerization increases the production of hepatitis B core particles in E. coli . Biotechnol Bioproc E 18, 850–857 (2013). https://doi.org/10.1007/s12257-013-0188-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0188-5

Keywords

Navigation