Skip to main content
Log in

Large-eddy simulation of air entrainment during diesel spray combustion with multi-dimensional CFD

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

Large-Eddy Simulation (LES) was used to perform computations of air entrainment and mixing during diesel spray combustion. The results of this simulation were compared with those of Reynolds Averaged Navier Stokes (RANS) simulations and an experiment. The effect of LES on non-vaporizing and vaporizing sprays was evaluated. The validity of the grid size used for the LES analysis was confirmed by determining the subgrid-scale (SGS) filter threshold on the turbulent energy spectrum plot, which separates a resolved range from a modeled one. The results showed that more air was entrained into the jet with decreasing ambient gas temperatures. The mass of the evaporated fuel increased with increasing ambient gas temperatures, as did the mixture fraction variance, showing a greater spread in the profile at an ambient gas temperature of 920 K than at 820 K. Flame lift-off length sensitivity was analyzed based on the location of the flame temperature iso-line. The results showed that for the flame temperature iso-line of 2000oC, the computed lift-off length values in RANS matched the experimental values well, whereas in LES, the computed lift-off length was slightly underpredicted. The apparent heat release rate (AHRR) computed by the LES approach showed good agreement with the experiment, and it provided an accurate prediction of the ignition delay; however, the ignition delay computed by the RANS was underpredicted. Finally, the relationships between the entrained air quantity and mixture fraction distribution as well as soot formation in the jet were observed. As more air was entrained into the jet, the amount of air-fuel premixing that occurred prior to the initial combustion zone increased, upstream of the lift-off length, and therefore, the soot formation downstream of the flame decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, J., Bracco, F. V. and Reitz, R. D. (1985). Comparison of computed and measured premixed charge engine combustion. Combustion and Flame, 60, 309–322.

    Article  Google Scholar 

  • Aceves, S. M. and Flowers, D. L. (2005). A detailed chemical kinetic analysis of low temperature nonsooting diesel combustion. SAE Paper No. 2005-01-0923.

  • Azimov, U. B., Roziboyev, E. A., Kim, K. S., Jeong, D. S., Lee, Y. G. and Yun, J. E. (2008). Investigation of soot formation in diesel-GTL fuel blends under quiescent conditions. Int. J. Automotive Technology 9,5, 523–534.

    Article  Google Scholar 

  • Bardina, J., Ferziger, J. H. and Reynolds, W. C. (1980). Improved subgrid model for large eddy simulations. AIAA Paper 80-1357.

  • Bianchi, G. M., Minelli, F., Scardovelli, R. and Zaleski, S. (2007). 3D large scale simulation of the high-speed liquid jet atomization. SAE Paper No. 2007-01-0244.

  • Bilger, R. W. (1976). The structure of diffusion flames. Combust. Sci. Technol., 13, 155.

    Article  Google Scholar 

  • Bilger, R. W. (1989). Turbulent diffusion flames. Ann. Rev. Fluid Mech., 21, 101–135.

    Article  MathSciNet  Google Scholar 

  • Borman, G. L. and Ragland, K. W. (1998). Combustion Engineering. Int. Edn. McGraw-Hill. New York.

    Google Scholar 

  • Brenn, G. and Frohn, A. (1989). Collision and merging of two equal droplets of propanol. Experiments in Fluids 7, 7, 441–446.

    Google Scholar 

  • Campbell, J. W., Gosman, A. D. and Hardy, G. (2008). Analysis of premix flame and lift-off in diesel spray combustion using multi-dimensional CFD. SAE Paper No. 2008-01-0968.

  • Cant, R. S. and Mastorakos, E. (2007). An Introduction to Turbulent Reacting Flows. Imperial college Press. London.

    Google Scholar 

  • Chigier, N. (1981). Energy, Combustion and Environment. McGraw-Hill. New York.

    Google Scholar 

  • Chumakov, S. and Rutland, C. J. (2004). Dynamic structure models for scalar flux and dissipation in large eddy simulation. AIAA J., 42, 1132–1139.

    Article  Google Scholar 

  • Dec, J. E. (1997). A conceptual model of DI diesel combustion based on laser-sheet imaging. SAE Paper No. 970873.

  • D’Errico, G., Ettorre, D. and Lucchini, T. (2007). Comparison of combustion and pollutant emission models for DI diesel engines. SAE Paper No. 2007-24-0045.

  • Flynn, P. F., Durrett, R. P., Hunter, G. L., Zur Loye, A. O., Akinyemi, O. C., Dec, J. E. and Westbrook, C. K. (1999). Diesel combustion: An integrated view combining laser diagnostics, chemical kinetics, and empirical validation. SAE Paper No. 1999-01-0509.

  • Germano, M., Piomelli, U., Moin, P. and Cabot, W. (1991). A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, 3, 1760–1765.

    Article  MATH  Google Scholar 

  • Han, D. and Mungal, M. G. (2001). Direct measurement of entrainment in reacting/nonreacting turbulent jets. Combustion and Flame, 124, 370–386.

    Article  Google Scholar 

  • Hawkes, E. R. and Cant, R. S. (2001). Implication of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combustion and Flame, 126, 1617–1629.

    Article  Google Scholar 

  • Heywood, J. B. (1989). Internal Combustion Engine Fundamentals. McGraw-Hill. NewYork. 635–648.

    Google Scholar 

  • Higgins, B. S., Siebers, D. L. and Aradi, A. (2000). Dieselspray ignition and premixed-burn behavior. SAE Paper No. 2000-01-0940.

  • Hori, T., Senda, J., Kuge, T. and Fujimoto, H. (2006). Large eddy simulation of non-evaporative and evaporative diesel spray in constant volume vessel by use of KIVALES. SAE Paper No. 2006-01-3334.

  • Hori, T., Kuge, T., Senda, J. and Fujimoto, H. (2007). Large eddy simulation of diesel spray combustion with eddy-dissipation model and CIP method by use of KIVALES. SAE Paper No. 2007-01-0247.

  • Hori, T., Kuge, T., Senda, J. and Fujimoto, H. (2008). Effect of convective schemes on LES of fuel spray by use of KIVALES. SAE Paper No. 2008-01-0930.

  • Hu, B. and Rutland, C. J. (2006). Flamelet modeling with LES for diesel engine simulations. SAE Paper No. 2006-01-0058.

  • Idicheria, C. A. and Pickett, L. M. (2007). Effect of EGR on diesel premixed-burn equivalence ratio. Proc. Combust. Inst., 31, 2931–2938.

    Article  Google Scholar 

  • Ishikawa, N. and Zhang, L. (1999). Characteristics of airentrainment in a diesel spray. SAE Paper No. 1999-01-0522.

  • Jeong, B. C. (2003). Study on the Spray Characteristics of Common-rail Injection System. M. S. Thesis. Yeosu National University. Korea.

    Google Scholar 

  • Jhavar, R. and Rutland, C. J. (2006). Using large eddy simulations to study mixing effects in early injection diesel engine combustion. SAE Paper No. 2006-01-0871.

  • Jiang, Y., Umemura, A. and Law, C. K. (1992). An experimental investigation on the collision behaviour of hydrocarbon droplets. J. Fluid Mechanics, 234, 171–190.

    Article  Google Scholar 

  • Kaario, O., Pokela, H., Kjaldman, L., Tiainen, J. and Larmi, M. (2003). LES and RNG turbulence modeling in DI diesel engines. SAE Paper No. 2003-01-1069.

  • Kimura, S., Kosaka, H., Matsui, Y. and Himeno, R. (2004). A numerical simulation of turbulent mixing in transient spray by LES (Comparison between numerical and experimental results of transient particle laden jets). SAE Paper No. 2004-01-2014.

  • Kolmogorov, A. N. (1941 a). The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Acad. Nauk SSSR, 30, 9–13 (Reprinted in Proc. R. Soc. London A 434 1991, 9–13).

    Google Scholar 

  • Kolmogorov, A. N. (1941 b). On degradation (decay) of isotropic turbulence in an incompressible viscous liquid. Dokl. Acad. Nauk SSSR, 31, 538–540.

    Google Scholar 

  • Kolmogorov, A. N. (1941 c). Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR, 32, 16–18 (Reprinted in Proc. R. Soc. London A 434 1991, 15–17).

    MATH  Google Scholar 

  • Kong, S.-C., Ayoub, N. and Reitz, R. D. (1992). Modeling combustion in compression ignition homogeneous charge engines. SAE Paper No. 920512.

  • Kong, S.-C., Han, Z. and Reitz, R. D. (1995). The development and application of a diesel ignition and combustion model for multidimensional engine simulation. SAE Paper No. 950278.

  • Lee, D., Pomraning, E. and Rutland, C. J. (2002). LES modeling of diesel engines. SAE Paper No. 2002-01-2779.

  • Lehtiniemi, H., Mauss, F., Balthasar, M. and Magnusson, I. (2006). Modeling diesel spray ignition using detailed chemistry with a progress variable approach. Combust. Sci. Technology, 178, 1977–1997.

    Article  Google Scholar 

  • Lesieur, M. and Metais, O. (1996). New trends in large eddy simulations of turbulence. Ann. Rev. Fluid Mechanics, 28, 45–85.

    Article  MathSciNet  Google Scholar 

  • Lesieur, M. (2005). Large Eddy Simulations of Turbulence. Cambridge University Press. New-York.?

    Book  MATH  Google Scholar 

  • Li, Y. H. and Kong, S.-C. (2008). Diesel combustion modeling using LES turbulence model with detailed chemistry. Combustion Theory and Modelling, 12, 205–219.

    Article  Google Scholar 

  • Magi, V., Iyer, V. and Abraham, J. (2001). The k-epsilon model and computed spreading rates in round and plane jets. Num. Heat Transfer, Part A, 40, 317–334.

    Article  Google Scholar 

  • Magnussen, B. F. and Hjertager, B. H. (1976). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. 16th Symp. Combustion. The Combustion Institute. 719–729.

  • Mastorakos, E., Baritaud, T. A. and Poinsot, T. J. (1997). Numerical simulations of autoignition in turbulent mixing flows. Combustion and Flame, 109, 198–223.

    Article  Google Scholar 

  • Menon, S., Yeung, P. K. and Kim, W. W. (1996). Effects of subgrid models on the computed interscale energy transfer in isotropic turbulence. Comput. Fluids, 25, 165–180.

    Article  MATH  Google Scholar 

  • Menon, S. (2000). Subgrid combustion modelling for large-eddy simulations. Int. J. Engine Res. 1, 2, 209–227.

    Article  Google Scholar 

  • Mohammadi, A., Miwa, K., Ishiyama, T. and Abe, M. (1998). Investigation of droplets and ambient gas interaction in a diesel spray using a nano-spark photography method. SAE Paper No. 981073.

  • Moin, P., Squires, K., Cabot, W. and Lee, S. (1991). A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids, 3, 2746–2757.

    Article  MATH  Google Scholar 

  • Naber, J. and Siebers, D. L. (1996). Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Paper No. 960034.

  • Patterson, M. A., Kong, S.-C., Hampson, G. J. and Reitz, R. D. (1994). Modeling the effects of fuel injection characteristics on diesel engine soot and NOx emissions. SAE Paper No. 940523.

  • Pauls, C., Vogel, S., Grünefeld, G. and Peters, N. (2007). Combined simulations and OH-chemiluminescence measurements of the combustion process using different fuels under diesel-engine like condition. SAE Paper No. 2007-01-0020.

  • Peters, N. (2000). Turbulent Combustion. Cambridge University Press. New-York.

    Book  MATH  Google Scholar 

  • Pickett, L. M., Siebers, D. L. and Idicheria, C. A. (2005). Relationship between ignition processes and the lift-off length of diesel fuel jets. SAE Paper No. 2005-01-3843.

  • Pickett, L. M., Kook, S., Persson H. and Andersson, O. (2009). Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition. Proc. Combust. Inst., 32, 2793–2800.

    Article  Google Scholar 

  • Pitsch, H. (2002). Improved pollutant predictions in largeeddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst., 29, 1971–1978.

    Article  Google Scholar 

  • Pitsch, H. and Peters, N. (1998). A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combustion and Flame, 114, 26–40.

    Article  Google Scholar 

  • Pitsch, H. and Steiner, H. (2000). Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids, 12, 2541–2554.

    Article  Google Scholar 

  • Pitsch, H. (2006). Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech., 38, 453–482.

    Article  MathSciNet  Google Scholar 

  • Poinsot, T. and Veynante, D. (2001). Theoretical and Numerical Combustion. R. T. Edwards, Inc., Philadelphia.

    Google Scholar 

  • Pomraning, E. and Rutland, C. J. (2002). A dynamic oneequation non-viscosity LES model. AIAA J., 44, 689–701.

    Article  Google Scholar 

  • Pope, S. B. (2004). Ten questions concerning the largeeddy simulation of turbulent flows. New J. Physics, 6,35, 1–24.

    Google Scholar 

  • Rajalingam, B. V. and Farrell, P. V. (1999). The effect of injection pressure on air entrainment into transient diesel sprays. SAE Paper No. 1999-01-0523.

  • Raman, V. and Pitsch, H. (2005). Large-eddy simulation of a bluff-body stabilized non-premixed flame using a recursive-refinement procedure. Combustion and Flame, 142, 329–347.

    Article  Google Scholar 

  • Reitz, R. D. (1987). Modeling atomization processes in high pressure vaporizing sprays. Atomization and Spray Technology, 3, 309.

    Google Scholar 

  • Reitz, R. D. and Diwakar, R. (1987). Structure of highpressure fuel spray. SAE Paper No. 870598.

  • Reitz, R. D. (1991). Assessment of wall heat transfer models for premixed-charge engine combustion computations. SAE Paper No. 910267.

  • Reitz, R. D. and Kuo, T. W. (1989). Modeling of HC emissions due to crevice flows in premixed-charge engines. SAE Paper No. 892085.

  • Rhim, D. R. and Farrell, P. V. (2000). Characteristics of air flow surrounding non-evaporating transient diesel sprays. SAE Paper No. 2000-01-2789.

  • Rhim, D. R. and Farrell, P. V. (2001). Effect of gas density and the number of injector holes on the air flow surrounding non-evaporating transient diesel sprays. SAE Paper No. 2001-01-0532.

  • Rhim, D. R. and Farrell, P. V. (2002a). Air flow characteristics surrounding evaporating transient diesel sprays. SAE Paper No. 2002-01-0499.

  • Rhim, D. R. and Farrell, P. V. (2002b). Air flow surrounding burning transient diesel sprays. SAE Paper No. 2002-01-2668.

  • Ricou, F. P. and Spalding, D. B. (1961). Measurements of entrainment by axisymmetric turbulent jets. J. Fluid Mechanics, 11, 21–32.

    Article  MATH  Google Scholar 

  • Sandia National Laboratories, USA, Engine Combustion Network. Available at http://www.ca.sandia.gov/ECN.

  • Sasaki, S., Akagawa, H. and Tsujimura, K. (1998). A study on surrounding air flow induced by diesel sprays. SAE Paper No. 980805.

  • Senecal, P. K., Pomraning, E., Richards, K. J., Briggs, T. E., Choi, C. Y., McDavid, R. M. and Patterson, M. A. (2003). Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. SAE Paper No. 2003-01-1043.

  • Siebers, D. L. (1999). Scaling liquid-phase penetration in diesel sprays based on mixing-limited vaporization. SAE Paper No. 1999-01-0528.

  • Siebers, D. and Higgins, B. (2001). Flame lift-off on directinjection diesel sprays under quiescent conditions. SAE Paper No. 2001-01-0530.

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Monthly Weather Rev., 93, 99–164.

    Article  Google Scholar 

  • Sone, K. and Menon, S. (2003). Effect of subgrid modeling on the in-cylinder unsteady mixing process in a direct injection engine. J. Eng. Gas Turb. Power, 125, 435–443.

    Article  Google Scholar 

  • STAR-CD Methodology, V3.26., 11–3, 10–28.

  • Tap, F. A. and Veynante, D. (2005). Simulation of flame lift-off on a diesel jet using a generalized flame surface density modeling approach. Proc. Combust. Inst., 30, 919–926.

    Article  Google Scholar 

  • Taylor, G. I. (1938). The spectrum of turbulence. Proc. R. Soc. London A164, 476–490.

    Google Scholar 

  • Tomita, E., Hamamoto, Y., Tsutsumi, H. and Yoshiyama, S. (1995). Measurement of ambient air entrainment into transient free gas jet by means of flow visualization. SAE Paper No. 950056.

  • Tomita, E., Hamamoto, Y., Yoshiyama, S., Tsutsumi, H. and Watanabe, T. (1997). Ambient air entrainment into transient hydrogen jet and its flame jet. SAE Paper No. 970894.

  • Turns, S. (2000). An Introduction to Combustion: Concepts and Applications. 2nd Edn. McGraw-Hill. New-York.

    Google Scholar 

  • Veynante, D. (2006). Large eddy simulations of turbulent combustion. Conf. Turbulence and Interactions TI 2006, May 29–June 2, Porquerolles, France.

  • de Villiers, E., Gosman, A. D. and Weller, H. G. (2004). Large eddy simulation of primary diesel spray atomization. SAE Paper No. 2004-01-0100.

  • Wang, Q. and Squires, K. D. (1996). Large eddy simulation of particle-laden turbulent channel flow. Physics of Fluids, 8, 1207–1223.

    Article  MATH  Google Scholar 

  • Warnatz, J., Maas, U. and Dibble, R. W. (2006). Combustion. 4th Edn. Springer-Verlag. ISBN: 978-3-540-25992-3.

  • Wilcox, D. C. (1998). Turbulence Modeling for CFD. DCW Industries. La Canada.

    Google Scholar 

  • Zhao, H. and Ladommatos, N. (1998). Optical diagnostics for soot and temperature measurement in diesel engines. Prog. Energy Combust. Sci., 24, 221–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azimov, U.B., Kim, K.S. Large-eddy simulation of air entrainment during diesel spray combustion with multi-dimensional CFD. Int.J Automot. Technol. 12, 795–812 (2011). https://doi.org/10.1007/s12239-011-0092-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-011-0092-y

Key Words

Navigation