Abraham, J., Bracco, F. V. and Reitz, R. D. (1985). Comparison of computed and measured premixed charge engine combustion.

*Combustion and Flame*,

**60**, 309–322.

CrossRefGoogle ScholarAceves, S. M. and Flowers, D. L. (2005). A detailed chemical kinetic analysis of low temperature nonsooting diesel combustion. *SAE Paper No.* 2005-01-0923.

Azimov, U. B., Roziboyev, E. A., Kim, K. S., Jeong, D. S., Lee, Y. G. and Yun, J. E. (2008). Investigation of soot formation in diesel-GTL fuel blends under quiescent conditions.

*Int. J. Automotive Technology*
**9,5**, 523–534.

CrossRefGoogle ScholarBardina, J., Ferziger, J. H. and Reynolds, W. C. (1980). Improved subgrid model for large eddy simulations. *AIAA Paper* 80-1357.

Bianchi, G. M., Minelli, F., Scardovelli, R. and Zaleski, S. (2007). 3D large scale simulation of the high-speed liquid jet atomization. *SAE Paper No.* 2007-01-0244.

Bilger, R. W. (1976). The structure of diffusion flames.

*Combust. Sci. Technol.*,

**13**, 155.

CrossRefGoogle ScholarBilger, R. W. (1989). Turbulent diffusion flames.

*Ann. Rev. Fluid Mech.*,

**21**, 101–135.

MathSciNetCrossRefGoogle ScholarBorman, G. L. and Ragland, K. W. (1998).

*Combustion Engineering*. Int. Edn. McGraw-Hill. New York.

Google ScholarBrenn, G. and Frohn, A. (1989). Collision and merging of two equal droplets of propanol.

*Experiments in Fluids*
**7**,

**7**, 441–446.

Google ScholarCampbell, J. W., Gosman, A. D. and Hardy, G. (2008). Analysis of premix flame and lift-off in diesel spray combustion using multi-dimensional CFD. *SAE Paper No.* 2008-01-0968.

Cant, R. S. and Mastorakos, E. (2007).

*An Introduction to Turbulent Reacting Flows*. Imperial college Press. London.

Google ScholarChigier, N. (1981).

*Energy, Combustion and Environment*. McGraw-Hill. New York.

Google ScholarChumakov, S. and Rutland, C. J. (2004). Dynamic structure models for scalar flux and dissipation in large eddy simulation.

*AIAA J.*,

**42**, 1132–1139.

CrossRefGoogle ScholarDec, J. E. (1997). A conceptual model of DI diesel combustion based on laser-sheet imaging. *SAE Paper No.* 970873.

D’Errico, G., Ettorre, D. and Lucchini, T. (2007). Comparison of combustion and pollutant emission models for DI diesel engines. *SAE Paper No.* 2007-24-0045.

Flynn, P. F., Durrett, R. P., Hunter, G. L., Zur Loye, A. O., Akinyemi, O. C., Dec, J. E. and Westbrook, C. K. (1999). Diesel combustion: An integrated view combining laser diagnostics, chemical kinetics, and empirical validation. *SAE Paper No.* 1999-01-0509.

Germano, M., Piomelli, U., Moin, P. and Cabot, W. (1991). A dynamic subgrid-scale eddy viscosity model.

*Phys. Fluids*,

**3**, 1760–1765.

MATHCrossRefGoogle ScholarHan, D. and Mungal, M. G. (2001). Direct measurement of entrainment in reacting/nonreacting turbulent jets.

*Combustion and Flame*,

**124**, 370–386.

CrossRefGoogle ScholarHawkes, E. R. and Cant, R. S. (2001). Implication of a flame surface density approach to large eddy simulation of premixed turbulent combustion.

*Combustion and Flame*,

**126**, 1617–1629.

CrossRefGoogle ScholarHeywood, J. B. (1989).

*Internal Combustion Engine Fundamentals*. McGraw-Hill. NewYork. 635–648.

Google ScholarHiggins, B. S., Siebers, D. L. and Aradi, A. (2000). Dieselspray ignition and premixed-burn behavior. *SAE Paper No.* 2000-01-0940.

Hori, T., Senda, J., Kuge, T. and Fujimoto, H. (2006). Large eddy simulation of non-evaporative and evaporative diesel spray in constant volume vessel by use of KIVALES. *SAE Paper No.* 2006-01-3334.

Hori, T., Kuge, T., Senda, J. and Fujimoto, H. (2007). Large eddy simulation of diesel spray combustion with eddy-dissipation model and CIP method by use of KIVALES. *SAE Paper No.* 2007-01-0247.

Hori, T., Kuge, T., Senda, J. and Fujimoto, H. (2008). Effect of convective schemes on LES of fuel spray by use of KIVALES. *SAE Paper No.* 2008-01-0930.

Hu, B. and Rutland, C. J. (2006). Flamelet modeling with LES for diesel engine simulations. *SAE Paper No.* 2006-01-0058.

Idicheria, C. A. and Pickett, L. M. (2007). Effect of EGR on diesel premixed-burn equivalence ratio.

*Proc. Combust. Inst.*,

**31**, 2931–2938.

CrossRefGoogle ScholarIshikawa, N. and Zhang, L. (1999). Characteristics of airentrainment in a diesel spray. *SAE Paper No.* 1999-01-0522.

Jeong, B. C. (2003).

*Study on the Spray Characteristics of Common-rail Injection System*. M. S. Thesis. Yeosu National University. Korea.

Google ScholarJhavar, R. and Rutland, C. J. (2006). Using large eddy simulations to study mixing effects in early injection diesel engine combustion. *SAE Paper No.* 2006-01-0871.

Jiang, Y., Umemura, A. and Law, C. K. (1992). An experimental investigation on the collision behaviour of hydrocarbon droplets.

*J. Fluid Mechanics*,

**234**, 171–190.

CrossRefGoogle ScholarKaario, O., Pokela, H., Kjaldman, L., Tiainen, J. and Larmi, M. (2003). LES and RNG turbulence modeling in DI diesel engines. *SAE Paper No.* 2003-01-1069.

Kimura, S., Kosaka, H., Matsui, Y. and Himeno, R. (2004). A numerical simulation of turbulent mixing in transient spray by LES (Comparison between numerical and experimental results of transient particle laden jets). *SAE Paper No.* 2004-01-2014.

Kolmogorov, A. N. (1941 a). The local structure of turbulence in incompressible viscous fluid for very large Reynolds number.

*Dokl. Acad. Nauk SSSR*,

**30**, 9–13 (Reprinted in Proc. R. Soc. London A 434 1991, 9–13).

Google ScholarKolmogorov, A. N. (1941 b). On degradation (decay) of isotropic turbulence in an incompressible viscous liquid.

*Dokl. Acad. Nauk SSSR*,

**31**, 538–540.

Google ScholarKolmogorov, A. N. (1941 c). Dissipation of energy in locally isotropic turbulence.

*Dokl. Akad. Nauk SSSR*,

**32**, 16–18 (Reprinted in Proc. R. Soc. London A 434 1991, 15–17).

MATHGoogle ScholarKong, S.-C., Ayoub, N. and Reitz, R. D. (1992). Modeling combustion in compression ignition homogeneous charge engines. *SAE Paper No.* 920512.

Kong, S.-C., Han, Z. and Reitz, R. D. (1995). The development and application of a diesel ignition and combustion model for multidimensional engine simulation. *SAE Paper No.* 950278.

Lee, D., Pomraning, E. and Rutland, C. J. (2002). LES modeling of diesel engines. *SAE Paper No.* 2002-01-2779.

Lehtiniemi, H., Mauss, F., Balthasar, M. and Magnusson, I. (2006). Modeling diesel spray ignition using detailed chemistry with a progress variable approach.

*Combust. Sci. Technology*,

**178**, 1977–1997.

CrossRefGoogle ScholarLesieur, M. and Metais, O. (1996). New trends in large eddy simulations of turbulence.

*Ann. Rev. Fluid Mechanics*,

**28**, 45–85.

MathSciNetCrossRefGoogle ScholarLesieur, M. (2005).

*Large Eddy Simulations of Turbulence*. Cambridge University Press. New-York.?

MATHCrossRefGoogle ScholarLi, Y. H. and Kong, S.-C. (2008). Diesel combustion modeling using LES turbulence model with detailed chemistry.

*Combustion Theory and Modelling*,

**12**, 205–219.

CrossRefGoogle ScholarMagi, V., Iyer, V. and Abraham, J. (2001). The k-epsilon model and computed spreading rates in round and plane jets.

*Num. Heat Transfer, Part A*,

**40**, 317–334.

CrossRefGoogle ScholarMagnussen, B. F. and Hjertager, B. H. (1976). On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. *16th Symp. Combustion. The Combustion Institute*. 719–729.

Mastorakos, E., Baritaud, T. A. and Poinsot, T. J. (1997). Numerical simulations of autoignition in turbulent mixing flows.

*Combustion and Flame*,

**109**, 198–223.

CrossRefGoogle ScholarMenon, S., Yeung, P. K. and Kim, W. W. (1996). Effects of subgrid models on the computed interscale energy transfer in isotropic turbulence.

*Comput. Fluids*,

**25**, 165–180.

MATHCrossRefGoogle ScholarMenon, S. (2000). Subgrid combustion modelling for large-eddy simulations.

*Int. J. Engine Res*.

**1**,

**2**, 209–227.

CrossRefGoogle ScholarMohammadi, A., Miwa, K., Ishiyama, T. and Abe, M. (1998). Investigation of droplets and ambient gas interaction in a diesel spray using a nano-spark photography method. *SAE Paper No.* 981073.

Moin, P., Squires, K., Cabot, W. and Lee, S. (1991). A dynamic subgrid-scale model for compressible turbulence and scalar transport.

*Phys. Fluids*,

**3**, 2746–2757.

MATHCrossRefGoogle ScholarNaber, J. and Siebers, D. L. (1996). Effects of gas density and vaporization on penetration and dispersion of diesel sprays. *SAE Paper No.* 960034.

Patterson, M. A., Kong, S.-C., Hampson, G. J. and Reitz, R. D. (1994). Modeling the effects of fuel injection characteristics on diesel engine soot and NOx emissions. *SAE Paper No.* 940523.

Pauls, C., Vogel, S., Grünefeld, G. and Peters, N. (2007). Combined simulations and OH-chemiluminescence measurements of the combustion process using different fuels under diesel-engine like condition. *SAE Paper No.* 2007-01-0020.

Peters, N. (2000).

*Turbulent Combustion*. Cambridge University Press. New-York.

MATHCrossRefGoogle ScholarPickett, L. M., Siebers, D. L. and Idicheria, C. A. (2005). Relationship between ignition processes and the lift-off length of diesel fuel jets. *SAE Paper No.* 2005-01-3843.

Pickett, L. M., Kook, S., Persson H. and Andersson, O. (2009). Diesel fuel jet lift-off stabilization in the presence of laser-induced plasma ignition.

*Proc. Combust. Inst.*,

**32**, 2793–2800.

CrossRefGoogle ScholarPitsch, H. (2002). Improved pollutant predictions in largeeddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations.

*Proc. Combust. Inst.*,

**29**, 1971–1978.

CrossRefGoogle ScholarPitsch, H. and Peters, N. (1998). A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects.

*Combustion and Flame*,

**114**, 26–40.

CrossRefGoogle ScholarPitsch, H. and Steiner, H. (2000). Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D).

*Phys. Fluids*,

**12**, 2541–2554.

CrossRefGoogle ScholarPitsch, H. (2006). Large-eddy simulation of turbulent combustion.

*Annu. Rev. Fluid Mech.*,

**38**, 453–482.

MathSciNetCrossRefGoogle ScholarPoinsot, T. and Veynante, D. (2001).

*Theoretical and Numerical Combustion*. R. T. Edwards, Inc., Philadelphia.

Google ScholarPomraning, E. and Rutland, C. J. (2002). A dynamic oneequation non-viscosity LES model.

*AIAA J.*,

**44**, 689–701.

CrossRefGoogle ScholarPope, S. B. (2004). Ten questions concerning the largeeddy simulation of turbulent flows.

*New J. Physics*,

**6,35**, 1–24.

Google ScholarRajalingam, B. V. and Farrell, P. V. (1999). The effect of injection pressure on air entrainment into transient diesel sprays. *SAE Paper No.* 1999-01-0523.

Raman, V. and Pitsch, H. (2005). Large-eddy simulation of a bluff-body stabilized non-premixed flame using a recursive-refinement procedure.

*Combustion and Flame*,

**142**, 329–347.

CrossRefGoogle ScholarReitz, R. D. (1987). Modeling atomization processes in high pressure vaporizing sprays.

*Atomization and Spray Technology*,

**3**, 309.

Google ScholarReitz, R. D. and Diwakar, R. (1987). Structure of highpressure fuel spray. *SAE Paper No.* 870598.

Reitz, R. D. (1991). Assessment of wall heat transfer models for premixed-charge engine combustion computations. *SAE Paper No.* 910267.

Reitz, R. D. and Kuo, T. W. (1989). Modeling of HC emissions due to crevice flows in premixed-charge engines. *SAE Paper No.* 892085.

Rhim, D. R. and Farrell, P. V. (2000). Characteristics of air flow surrounding non-evaporating transient diesel sprays. *SAE Paper No.* 2000-01-2789.

Rhim, D. R. and Farrell, P. V. (2001). Effect of gas density and the number of injector holes on the air flow surrounding non-evaporating transient diesel sprays. *SAE Paper No.* 2001-01-0532.

Rhim, D. R. and Farrell, P. V. (2002a). Air flow characteristics surrounding evaporating transient diesel sprays. *SAE Paper No.* 2002-01-0499.

Rhim, D. R. and Farrell, P. V. (2002b). Air flow surrounding burning transient diesel sprays. *SAE Paper No.* 2002-01-2668.

Ricou, F. P. and Spalding, D. B. (1961). Measurements of entrainment by axisymmetric turbulent jets.

*J. Fluid Mechanics*,

**11**, 21–32.

MATHCrossRefGoogle ScholarSandia National Laboratories, USA, Engine Combustion Network. Available at

http://www.ca.sandia.gov/ECN.

Sasaki, S., Akagawa, H. and Tsujimura, K. (1998). A study on surrounding air flow induced by diesel sprays. *SAE Paper No.* 980805.

Senecal, P. K., Pomraning, E., Richards, K. J., Briggs, T. E., Choi, C. Y., McDavid, R. M. and Patterson, M. A. (2003). Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. *SAE Paper No.* 2003-01-1043.

Siebers, D. L. (1999). Scaling liquid-phase penetration in diesel sprays based on mixing-limited vaporization. *SAE Paper No.* 1999-01-0528.

Siebers, D. and Higgins, B. (2001). Flame lift-off on directinjection diesel sprays under quiescent conditions. *SAE Paper No.* 2001-01-0530.

Smagorinsky, J. (1963). General circulation experiments with the primitive equations.

*Monthly Weather Rev.*,

**93**, 99–164.

CrossRefGoogle ScholarSone, K. and Menon, S. (2003). Effect of subgrid modeling on the in-cylinder unsteady mixing process in a direct injection engine.

*J. Eng. Gas Turb. Power*,

**125**, 435–443.

CrossRefGoogle ScholarSTAR-CD Methodology, V3.26., 11–3, 10–28.

Tap, F. A. and Veynante, D. (2005). Simulation of flame lift-off on a diesel jet using a generalized flame surface density modeling approach.

*Proc. Combust. Inst.*,

**30**, 919–926.

CrossRefGoogle ScholarTaylor, G. I. (1938). The spectrum of turbulence.

*Proc. R. Soc. London*
**A164**, 476–490.

Google ScholarTomita, E., Hamamoto, Y., Tsutsumi, H. and Yoshiyama, S. (1995). Measurement of ambient air entrainment into transient free gas jet by means of flow visualization. *SAE Paper No.* 950056.

Tomita, E., Hamamoto, Y., Yoshiyama, S., Tsutsumi, H. and Watanabe, T. (1997). Ambient air entrainment into transient hydrogen jet and its flame jet. *SAE Paper No.* 970894.

Turns, S. (2000).

*An Introduction to Combustion: Concepts and Applications*. 2nd Edn. McGraw-Hill. New-York.

Google ScholarVeynante, D. (2006). Large eddy simulations of turbulent combustion. Conf. Turbulence and Interactions TI 2006, May 29–June 2, Porquerolles, France.

de Villiers, E., Gosman, A. D. and Weller, H. G. (2004). Large eddy simulation of primary diesel spray atomization. *SAE Paper No.* 2004-01-0100.

Wang, Q. and Squires, K. D. (1996). Large eddy simulation of particle-laden turbulent channel flow.

*Physics of Fluids*,

**8**, 1207–1223.

MATHCrossRefGoogle ScholarWarnatz, J., Maas, U. and Dibble, R. W. (2006). *Combustion*. 4th Edn. Springer-Verlag. ISBN: 978-3-540-25992-3.

Wilcox, D. C. (1998).

*Turbulence Modeling for CFD*. DCW Industries. La Canada.

Google ScholarZhao, H. and Ladommatos, N. (1998). Optical diagnostics for soot and temperature measurement in diesel engines.

*Prog. Energy Combust. Sci.*,

**24**, 221–255.

CrossRefGoogle Scholar