Skip to main content
Log in

Bilinear Hilbert Transforms Associated with Plane Curves

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We prove that the bilinear Hilbert transforms and maximal functions along certain general plane curves are bounded from \(L^2({{\mathbb {R}}})\times L^2({{\mathbb {R}}})\) to \(L^1({{\mathbb {R}}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the problems considered in this paper, we can always remove the constant \(a\) from the definition of \(\Gamma \) by a translation argument, hence there is no need to specify the dependence of \(\Gamma \) on \(a\) and we will always let \(a=0\).

  2. The condition (2.2) implies that there exist constants \(K_1, K_2>0\) such that

    $$\begin{aligned} \big |\gamma '(\epsilon )\big |\le K_1|\epsilon |^{c_1}\quad \mathrm{for}\,\, 0<|\epsilon |<c_0 \end{aligned}$$

    or

    $$\begin{aligned} \big |\gamma '(\epsilon )\big |\ge K_2|\epsilon |^{-c_1}\quad \mathrm{for}\,\, 0<|\epsilon |<c_0. \end{aligned}$$

    See also Lie [13, p. 4] Observation (6) and (7).

  3. \(B(t, r)\) denotes the interval \((t-r, t+r)\).

  4. We actually do not need the condition (2.4) for this proposition.

  5. In this part we mainly follow the argument contained in Section 6 of the preprint arXiv:0805.0107 and make necessary modifications in order to adapt it to the current case.

  6. In this part we mainly generalize the argument contained in Sections 8, 10, and 11 of the preprint arXiv:0805.0107. In particular we apply Lemma 3.3 with a carefully-chosen function set \(U(\mathbf I )\).

  7. We do not need the condition (2.4) for this proposition.

References

  1. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 125–157 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christ, M., Nagel, A., Stein, E.M., Wainger, S.: Singular and maximal Radon transforms: analysis and geometry. Ann. Math. (2) 150(2), 489–577 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fefferman, C.: Pointwise convergence of Fourier series. Ann. Math. (2) 98, 551–571 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  4. Guo, J.W.: On lattice points in large convex bodies. Acta Arith. 151(1), 83–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hörmander, L.: Oscillatory integrals and multipliers on \(FL^p\). Ark. Mat. 11, 1–11 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1983)

    MATH  Google Scholar 

  7. Lacey, M.: The bilinear maximal functions map into \(L^p\) for \( 2/3 < p\le 1\). Ann. Math. (2) 151(1), 35–57 (2000)

  8. Lacey, M., Thiele, C.: \(L^p\) estimates on the bilinear Hilbert transform for \(2<p<\infty \). Ann. Math. 146, 693–724 (1997)

  9. Lacey, M., Thiele, C.: On Calderón’s conjecture. Ann. Math. (2) 149(2), 475–496 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, X.: Uniform estimates for some paraproducts. New York J. Math. 14, 145–192 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Li, X.: Bilinear Hilbert transforms along curves, I: the monomial case. Anal. PDE 6(1), 197–220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X., Xiao, L.: Uniform estimates for bilinear Hilbert transform and bilinear maximal functions associated to polynomials. arXiv:1308.3518 (2013)

  13. Lie, V.: On the boundedness of the bilinear Hilbert transform along “non-flat” smooth curves. Amer. J. Math. (2015) (to appear)

  14. Nagel, A., Rivière, N., Wainger, S.: On Hilbert transforms along curves. Bull. Am. Math. Soc. 80, 106–108 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nagel, A., Rivière, N., Wainger, S.: On Hilbert transforms along curves II. Am. J. Math. 98(2), 395–403 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nagel, A., Vance, J., Wainger, S., Weinberg, D.: Hilbert transforms for convex curves. Duke Math. J. 50(3), 735–744 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Am. Math. Soc. 84(6), 1239–1295 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude to Xiaochun Li for valuable advice and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Xiao, L. Bilinear Hilbert Transforms Associated with Plane Curves. J Geom Anal 26, 967–995 (2016). https://doi.org/10.1007/s12220-015-9580-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9580-z

Keywords

Mathematics Subject Classification

Navigation