Skip to main content

Advertisement

Log in

Estimates of Biomass Yield for Perennial Bioenergy Grasses in the USA

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus × giganteus), are potential choices for biomass feedstocks with low-input and high dry matter yield per hectare in the USA and Europe. However, the biophysical potential to grow bioenergy grasses varies with time and space due to changes in environmental conditions. Here, we integrate the dynamic crop growth processes for Miscanthus and two different cultivars of switchgrass, Cave-in-Rock and Alamo, into a land surface model, the Integrated Science Assessment Model (ISAM), to estimate the spatial and temporal variations of biomass yields over the period 2001–2012 in the eastern USA. The validation with observed data from sites across diverse environmental conditions suggests that the model is able to simulate the dynamic response of bioenergy grass growth to changes in environmental conditions in the central and south of the USA. The model is applied to identify four spatial zones characterized by their average yield amplitude and temporal yield variance (or stability) over 2001–2012 in the USA: a high and stable yield zone (HS), a high and unstable yield zone (HU), a low and stable yield zone (LS), and a low and unstable yield zone (LU). The HS zones are mainly distributed in the regions with precipitation larger than 600 mm, and mean temperature range 292–294 K during the growing season, including southern Missouri, northwestern Arkansas, southern Illinois, southern Indiana, southern Ohio, western Kentucky, and parts of northern Virginia. The LU yield zones are distributed in southern parts of Great Plains with water stress conditions and higher temporal variances in precipitation, such as Oklahoma and Kansas. Three bioenergy grasses may not grow in the LS yield zones, including western parts of Great Plains due to extreme low precipitation and poor soil texture, and upper part of north central, northeastern, and northern New England due to extreme cold conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schnepf R, Yacobucci BD (2013) Renewable fuel standard (RFS): overview and issues. Congr Res Serv Rep Congr R40155

  2. Gunderson CA, Davis EB, Jager HI, West TO, Perlack RD, Brandt CC, Wullschleger SD, Baskaran LM, Wilkerson EG, Downing ME (2008) Exploring potential U.S. switchgrass production for cellulosic ethanol using empirical modeling approaches. Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/TM 2007/183

  3. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. GCB Bioenergy 14:2000–2014

    Google Scholar 

  4. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous gasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361

    Article  Google Scholar 

  5. Casler MD, Vogel KP, Taliagerro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44:293–303

    Google Scholar 

  6. USDA, Plant Hardiness Zone Map (2012) Agricultural Research Service, U.S. Department of Agriculture. http://planthardiness.ars.usda.gov. Accessed 1 May 2013

  7. Casler MD (2012) Switchgrass breeding, genetics, and genomics. In: Monti A (ed) Switchgrass, green energy and technology. Springer, London

    Google Scholar 

  8. Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Plant Sci 24:423–459

    Article  Google Scholar 

  9. Jager H, Baskaran LM, Brandt CC, Davis EB, Gunderson CA, Wullschleger SD (2010) Empirical geographic modeling of switchgrass yields in the United States. GCB Bioenergy 2:248–257

    Article  Google Scholar 

  10. Nair SS, Kang S, Zhang X, Miguez FE, Izaurralde RC, Post WM, Dietze MC, Lynd LR, Wullschleger SD (2012) Bioenergy crop models: descriptions, data requirements, and future challenges. GCB Bioenergy 4(6):620–633

    Article  Google Scholar 

  11. Propheter JL, Staggenborg S (2010) Performance of annual and perennial biofuel crops: nutrient removal during the first 2 years. Agron J 102:798–805

  12. Behrman KD, Kiniry JR, Winchell M, Juenger TE, Keitt TH (2013) Spatial forecasting of switchgrass productivity under current and future climate change scenarios. Ecol Appl 23(1):73–85

    Article  PubMed  Google Scholar 

  13. Clifton-Brown JC, Neilson BM, Lewandowski I, Jones MB (2000) The modeled productivity of Miscanthus × giganteus (GREEF et DEU) in Ireland. Ind Crop Prod 12:97–109

    Article  Google Scholar 

  14. Jain AK, Khanna M, Erickson M, Huang H (2010) An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States. GCB Bioenergy 2:217–234

    Article  Google Scholar 

  15. Hastings A, Clifton-Brown WJM, Mitchell CP, Smith P (2009) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy 1:154–170

    Article  Google Scholar 

  16. Thomson AM, Izarrualde RC, West TO, Parrish DJ, Tyler DD, Williams JR (2009) Simulation potential switchgrass production in the United States. Pacific Northwest National Laboratory, Richland, WA, PNNL-19072

  17. Miguez FE, Maughan M, Bollero GA, Long SP (2012) Modeling spatial and dynamic variation in growth, yield and yield stability of the bioenergy crops Miscanthus × giganteus and Panicum virgatum across the conterminous USA. GCB Bioenergy. doi:10.1111/j.1757-1707.2011.01150.x

    Google Scholar 

  18. VanLoocke A, Twine TE, Zeri M, Bernacchi CJ (2012) A regional comparison of water use efficiency for miscanthus, switchgrass and maize. Agric For Meteorol 164:82–95

    Article  Google Scholar 

  19. Di Vittorio AV, Andersen RS, White JD, Miller NL, Running SW (2010) Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses. Ecol Model 221:2038–2053

    Article  Google Scholar 

  20. Zhuang Q, Qin Z, Chen M (2013) Biofuel, land and water: maize, switchgrass or Miscanthus? Environ Res Lett. doi:10.1088/1748-9326/8/1/015020

    Google Scholar 

  21. Barman R, Jain AK, Liang M (2013) Climate-driven uncertainties in terrestrial gross primary production: a site-level to global scale analysis. Glob Chang Biol. doi:10.1111/gcb.12474

    Google Scholar 

  22. Barman R, Jain AK, Liang M (2013) Climate-driven uncertainties in terrestrial energy and water fluxes: a site-level to global scale analysis. Glob Chang Biol. doi:10.1111/gcb.12473

    Google Scholar 

  23. El-Masri B, Jain AK, Barman R, Meiyappan P, Song Y, Liang M (2013) Carbon dynamics in the Amazonian basin: integration of eddy covariance and ecophysiological data with a land surface model. Agric For Meteorol. doi:10.1016/j.agrformet.2013.03.011

    Google Scholar 

  24. Song Y, Jain AK, Mclsaac GF (2013) Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation. Biogeosciences 10:8039–8066

    Article  Google Scholar 

  25. Yang X, Witting V, Jain AK, Post WM (2009) Integration of nitrogen cycle dynamics into the integrated science assessment model for the study of terrestrial ecosystem responses to global change. Glob Biogeochem Cybern 23:GB4029. doi:10.1029/2009GB003474

    Google Scholar 

  26. Dai Y, Dickinson RE, Wang YP (2004) A two-big-leaf model for canopy temperature, photo- synthesis, and stomatal conductance. J Clim 17:2281–2299

    Article  Google Scholar 

  27. Oleson KW, Niu G, Yang Z, Lawrence DM, Thornton PE, Lawrence PJ, Stöckli R, Dickinson RE, Bonan GB, Levis S, Dai A, Qian T (2008) Improvements to the community land model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563

    Google Scholar 

  28. Heaton EA, Boersma N, Caveny JD, Voigt TB, Dohleman FG (2014) Miscanthus (Miscanthus × giganteus) for biofuel production. http://www.extension.org/pages-/26625/miscanthus-miscanthus-x-giganteus-for-biofuel-production#.U4p41i9RFhE. Accessed 17 May 2014

  29. Evers GW, Parsons MJ (2003) Soil type and moisture level influence on Alamo switchgrass emergence and seedling growth. Crop Sci 43:288–294

    Article  Google Scholar 

  30. Zub HW, Brancourt-hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy. A review. Agron Sustain Dev 30:201–214

    Article  Google Scholar 

  31. White MA, Thornton PE, Running SW (1997) A continental phenology model for monitoring vegetation responses to interannual climatic variability. Glob Biogeochem Cybern 11(2):217–234

    Article  CAS  Google Scholar 

  32. Kiniry JR, Anderson LC, Johnson MVV, Behrman KD, Brakie M, Burner D et al (2013) Perennial biomass grasses and the Mason-Dixon line: comparative productivity across latitudes in the southern great plains. Bioenerg Res 6:276–291

    Article  Google Scholar 

  33. Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J (2011) Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy 3:387–400

    Article  Google Scholar 

  34. Van Esbroeck GA, Hussey MA, Sanderson MA (2003) Variation between Alamo and Cave-in-Rock switchgrass in response to photoperiod extension. Crop Sci 43:639–643

    Google Scholar 

  35. Zegada-Lizarazu W, Wullschleger SD, Nair SS, Monti A (2012) Chapter 3 crop physiology. In: Monti A (ed) Switchgrass: a valuable biomass crop for energy. Springer, London, pp 55–86

    Chapter  Google Scholar 

  36. Casler MD, Vogel KP, Taliaferro CM, Ehlke NJ, Berdahl JD, Brummer EC et al (2007) Latitudinal and longitudinal adaptation of switchgrass populations. Crop Sci 47:2249–2260

    Article  Google Scholar 

  37. Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, Williams L, Miguez F, Voigt T (2012) Miscanthus × giganteus productivity: the effects of management in different environments. GCB Bioenergy 4:253–265

    Article  Google Scholar 

  38. Cassida KA, Muir JP, Hussey MA, Read JC, Venuto BC, Ocumpaugh WR (2005) Biomass yield and stand characteristics of switchgrass in south Central U.S. environments. Crop Sci 45:673–681

    Article  Google Scholar 

  39. Moser LE, Vogel KP (1995) Switchgrass, big bluestem, and indiangrass. In: Barnes RF et al (eds) Forages, an introduction to grassland agriculture, vol 1, 5th edn. Iowa State University Press, Ames, pp 409–421

    Google Scholar 

  40. Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, Mcisaac FG, David MB, Voigt TB, Boersma NN, Long SP (2010) Miscanthus: a promising biomass crop. Adv Bot Res 56:76–92

    Google Scholar 

  41. Roman ES, Murphy SD, Swanton CJ (2000) Simulation of chenopodium album seedling emergence. Weed Sci 48:217–224

    Article  CAS  Google Scholar 

  42. Lemus R, Brummer EC, Moore KJ, Molstad NE, Burras CL, Barker MF (2002) Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA. Biomass Bioenergy 23:433–442

    Article  CAS  Google Scholar 

  43. Heaton EA, Dohleman FG, Long SP (2009) Seasonal nitrogen dynamics of Miscanthus × giganteus and Panicum virgatum. GCB Bioenergy 1:297–307

    Article  CAS  Google Scholar 

  44. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffleld J, Duan Q, Luo L, Higgins RW, Pinker RT, Tarpley JD, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Balley AA (2004) The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res. doi:10.1029/2003JD003823, D07S90

    Google Scholar 

  45. Soil Survey Staff, Natural Resources Conservations Service, United States Department of Agriculture. U.S. general soil map (STATSGO2). http://soildatamart.nrcs.usda.gov. Accessed 13 August 2013

  46. Dohleman FG, Long SP (2009) More productive than maize in the midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Physiol 32:1525–1537

    CAS  Google Scholar 

  48. Dohleman FG, Heaton EA, Arundale RA, Long SP (2012) Seasonal dynamics of above- and below-ground biomass and nitrogen partitioning in Miscanthus × giganteus and Panicum virgatum across three growing seasons. GCB Bioenergy 4:534–544

    Article  CAS  Google Scholar 

  49. Kiniry JR, Tischler CR, Van Esbroeck GA (1999) Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy 17:95–112

    Article  Google Scholar 

  50. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094

    Article  Google Scholar 

  51. Barney JN, Mann JJ, Kyser GB, Blumwald E, Deynze AV, DiTomaso JM (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci. doi:10.1016/j.plantsci.2009.09.003

    Google Scholar 

  52. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, ;Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE 50(3):885–900

    Article  Google Scholar 

  53. Dohleman FG (2009) Seasonal dynamics of productivity and photosynthesis of three biofuel feedstocks: field comparisons of Miscanthus × giganteus, Panicum virgatum and Zea mays. Dissertation, University of Illinois at Urbana-Champaign, IL

  54. Parrish DJ, Wolf DD, Fike JH, Daniels WL (2003) Switchgrass as a biofuels crop for the upper Southeast: variety trials and cultural improvements, Final report for 1997 to 2001. Oak Ridge National Laboratory, Oak Ridge, TN, ORNL/SUB-03019XSY163/01

  55. Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT Jr, Rasnake M, Reynolds JH (2006) Switchgrass production for the upper southeastern USA: influence of cultivar and cutting frequency on biomass yields. Biomass Bioenergy 30:207–213

    Article  Google Scholar 

  56. Schmer MR, Mitchell RB, Vogel KP, Schacht WH, Marx DB (2009) Spatial and temporal effects on switchgrass stands and yield in the Great Plains. Bioenerg Res. doi:10.1007/s12155-009-9045-y

    Google Scholar 

  57. Blackmore S, Godwin RJ, Fountas S (2003) The analysis of spatial and temporal trends in yield map data over 6 years. Biosyst Eng 84(4):455–466

  58. Pyter R, Voigt T, Heaton E, Dohleman F, Long SP (2007) Growing giant Miscanthus in Illinois. University of Illinois Extension, Urbana-Champaign

    Google Scholar 

  59. Rinehart L (2006) Switchgrass as a bioenergy crop. National sustainable agriculture information service. https://attra.ncat.org/attra-pub/summaries/summary.php?pub=311. Accessed 5 August 2013

  60. Lee DK, Parrish AS, Voigt TB (2014) Switchgrass and giant Miscanthus agronomy. In: Shastri YA et al (eds) Engineering and biomass feedstock production and provision. Spring, New York, pp 37–59

    Chapter  Google Scholar 

  61. Gibbons JD, Chakraborti S (2011) Nonparametric statistical inference, 5th edn. Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  62. Mclsaac GF, David MB, Mitchell CA (2010) Miscanthus and switchgrass production in central Illinois: impacts on hydrology and inorganic nitrogen leaching. J Environ Qual 39:1790–1799

    Article  Google Scholar 

  63. Pennington D (2013) Bioenergy crops for Michigan and the Upper Midwest. http://cropwatch.unl.edu/bioenergy/forums. Assessed 10 May 2013

  64. Sanderson MA, Wolf DD (1995) Morphological development of switchgrass in diverse environments. Agron J 87:908–915

    Article  Google Scholar 

  65. USDA, NRCS (2013) The PLANTS Database, National plant data team, Greenboro, http://plants.usda.gov. Accessed 13 August 2013

  66. Weng JH, Ueng RG (1997) Effect of temperature on photosynthesis of Miscanthus clones collected from different elevations. Photosynthetica 34(2):307–311

    Article  Google Scholar 

  67. Wullschleger SD, Sanderson MA, McLaughlin SB, Biradar DP, Rayburn AL (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci 36:306–312

    Article  Google Scholar 

  68. Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (2003) Biomass, carbon and nitrogen dynamics of multi-species riparian buffers within an agricultural watershed in Iowa. USA Agrofor Syst 57:187–198

    Article  Google Scholar 

  69. Johnson JMF, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Biol Biochem 71:155–162

    CAS  Google Scholar 

  70. Burner DM, Tew TL, Harvey JJ, Belesky DP (2009) Dry matter partitioning and quality of Miscanthus, Panicum, and Saccharum genotypes in Arkansas, USA. Biomass Bioenergy 33:610–619

    Article  Google Scholar 

  71. Sollenberger LE, Erickson J, Vendramini J, Gilbert R, Soikiew A, Na C, Fedenko J (2010) Water-use efficiency and feedstock composition of candidate bioenergy grasses in Florida. Florida Energy Systems Consortium, pp 251–256, http://www.floridaenergy.ufl.edu/wp-content/uploads/Sollenberger.pdf. Accessed 13 August 2013

  72. Berdahl JD, Frank AB, Krupinsky JM, Carr PM, Hanson JD, Johnson HA (2005) Biomass yield, phenology, and survival of diverse switchgrass cultivars and experimental strains in western North Dakota. Agron J 97:549–555

    Article  Google Scholar 

  73. Casler MD, Boe AR (2003) Cultivar × environment interactions in switchgrass. Crop Sci 43:2226–2233

    Article  Google Scholar 

  74. Fike JH, Parrish DJ, Wolf DD, Balasko JA, Green JT Jr, Rasnake M, Reynolds JH (2006) Long-term yield potential of switchgrass-for-biofuel systems. Biomass Bioenergy 30:198–206

    Article  Google Scholar 

  75. Fuentes RG, Taliaferro CM (2002) Biomass yield stability of switchgrass cultivars. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 276–282

    Google Scholar 

  76. Sanderson MA, Reed RL, Ocumpaugh WR, Hussey MA, Van Esbroeck G, Reed JC, Tischler CR, Hons FM (1999) Switchgrass cultivars and germplasm for biomass feedstock production in Texas. Bioresour Technol 67:209–219

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the US National Science Foundation (No. NSF-AGS-12-43071 and NSF-EFRI-083598), the USDA National Institute of Food and Agriculture (NIFA) (2011-68002-30220), and US Department of Energy (DOE) Office of Science (DOE-DE-SC0006706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul K. Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCfs 981 kb)

Fig. S2

(DOC 9127 kb)

Fig. S3

(DOC 8090 kb)

Appendix

Appendix

Table 8 The values for various parameters used in this study. The three values separated by comma (,) the ‘Values’ column are for Miscanthus, Cave-in-Rock, and Alamo
Table 9 Additional ISAM model equations used in this study
Table 10 The location (latitude and longitude) and climate (annual mean temperature and accumulated precipitation) and soil characteristics of data sites used for model evaluation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Jain, A.K., Landuyt, W. et al. Estimates of Biomass Yield for Perennial Bioenergy Grasses in the USA. Bioenerg. Res. 8, 688–715 (2015). https://doi.org/10.1007/s12155-014-9546-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9546-1

Keywords

Navigation